Seeded growth induced amorphous to crystalline transformation of niobium oxide nanostructures.

نویسندگان

  • Subhra Jana
  • Robert M Rioux
چکیده

A novel high-temperature synthesis of niobium oxide nanostructures has been developed through an amorphous intermediate that crystallizes into anisotropic crystalline structures through a complex mechanism of nucleation-dissolution-selective growth induced by seeded growth. The amorphous materials formed by the thermolysis of niobium oleate transformed into crystalline platelets, wires or bundled wires after the injection of additional niobium oleate at different temperatures. The temperature of the solution during injection of the additional precursor determined the morphology of the formed crystalline structure. The time- and temperature-dependent evolution of the niobium oxide nanostructures demonstrates that amorphous materials progressively turned to crystalline materials. We tuned the size of wires and platelets by the consecutive injection of the precursor solution into the reaction mixture under isothermal conditions. With the sequential injection of the precursor solution, we demonstrate that the anisotropic growth of individual nanowires occurs exclusively along the ends, without the formation of any new nuclei. A mechanism for the transformation of well-defined platelets from wires has been proposed and is due to the exclusive loss of mass at the ends of the wires while growth of the platelets initially occurs along the (001) direction which is then replaced by the (110) face.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-free synthesis of 3D Nb(3)O(7)F hierarchical nanostructures and enhanced photocatalytic activities.

Single-crystalline niobium oxide fluoride (Nb(3)O(7)F) hierarchical nanostructures are firstly prepared via a facile hydrothermal method without using any template or surfactant. The results of scanning electron microscopy and transmission electron microscopy showed that the hierarchical morphology of Nb(3)O(7)F could be effectively controlled by adjusting the reaction time. Ultraviolet-visible...

متن کامل

Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of at...

متن کامل

Fabrication of spherical particles with mixed amorphous/crystalline nanostructured cores and insulating oxide shells

By spark-eroding Fe75Si15B10 in water/ethanol mixtures, spherical particles with nanostructured cores consisting of mixed amorphous and crystalline phases were produced. The relative volume fractions of the amorphous and crystalline phases were dependent on the water/ethanol ratio. In the same process, continuous oxide layers were formed on the particle surfaces. The basic mechanisms responsibl...

متن کامل

Homoepitaxial branching: an unusual polymorph of zinc oxide derived from seeded solution growth.

The development of hydrothermal synthesis has greatly promoted bottom-up nanoscience for the rational growth of diverse zinc oxide (ZnO) nanostructures. In comparison with normal ZnO nanowires, ZnO nanostructures with a larger surface area, for instance, branched nanowires, are more attractive in the application fields of catalysis, sensing, dye-sensitized solar cells etc. So far the ZnO branch...

متن کامل

Investigation the Effect of Niobium Oxide Additive on the Dielectric Properties of Bismuth Titanate

Bismuth titanate ceramic has been attracted as a lead-free ferroelectric due to its high Curie temperature in high temperature applications as well as high frequency applications. In this study, the effect of niobium oxide as an additive on the microstructure and dielectric properties of bismuth titanate ceramic was investigated. For this purpose, niobium oxide was added to bismuth titanate, sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 5  شماره 

صفحات  -

تاریخ انتشار 2012