Discourse Relation Recognition by Comparing Various Units of Sentence Expression with Recursive Neural Network
نویسندگان
چکیده
We propose a method for implicit discourse relation recognition using a recursive neural network (RNN). Many previous studies have used the word-pair feature to compare the meaning of two sentences for implicit discourse relation recognition. Our proposed method differs in that we use various-sized sentence expression units and compare the meaning of the expressions between two sentences by converting the expressions into vectors using the RNN. Experiments showed that our method significantly improves the accuracy of identifying implicit discourse relations compared with the word-pair method.
منابع مشابه
Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملBilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition
To alleviate the shortage of labeled data, we propose to use bilingually-constrained synthetic implicit data for implicit discourse relation recognition. These data are extracted from a bilingual sentence-aligned corpus according to the implicit/explicit mismatch between different languages. Incorporating these data via a multi-task neural network model achieves significant improvements over ba...
متن کاملShallow Convolutional Neural Network for Implicit Discourse Relation Recognition
Implicit discourse relation recognition remains a serious challenge due to the absence of discourse connectives. In this paper, we propose a Shallow Convolutional Neural Network (SCNN) for implicit discourse relation recognition, which contains only one hidden layer but is effective in relation recognition. The shallow structure alleviates the overfitting problem, while the convolution and nonl...
متن کاملA Stacking Gated Neural Architecture for Implicit Discourse Relation Classification
Discourse parsing is considered as one of the most challenging natural language processing (NLP) tasks. Implicit discourse relation classification is the bottleneck for discourse parsing. Without the guide of explicit discourse connectives, the relation of sentence pairs are very hard to be inferred. This paper proposes a stacking neural network model to solve the classification problem in whic...
متن کاملExploring Joint Neural Model for Sentence Level Discourse Parsing and Sentiment Analysis
Discourse Parsing and Sentiment Analysis are two fundamental tasks in Natural Language Processing that have been shown to be mutually beneficial. In this work, we design and compare two Neural models for jointly learning both tasks. In the proposed approach, we first create a vector representation for all the text segments in the input sentence. Next, we apply three different Recursive Neural N...
متن کامل