Analysis of the Incircle predicate for the Euclidean Voronoi diagram of axes-aligned line segments
نویسندگان
چکیده
In this paper we study the most-demanding predicate for computing the Euclidean Voronoi diagram of axes-aligned line segments, namely the Incircle predicate. Our contribution is twofold: firstly, we describe, in algorithmic terms, how to compute the Incircle predicate for axesaligned line segments, and secondly we compute its algebraic degree. Our primary aim is to minimize the algebraic degree, while, at the same time, taking into account the amount of operations needed to compute our predicate of interest. In our predicate analysis we show that the Incircle predicate can be answered by evaluating the signs of algebraic expressions of degree at most 6; this is half the algebraic degree we get when we evaluate the Incircle predicate using the current state-of-the-art approach. In the most demanding cases of our predicate evaluation, we reduce the problem of answering the Incircle predicate to the problem of computing the sign of the value of a linear polynomial (in one variable), when evaluated at a known specific root of a quadratic polynomial (again in one variable). Another important aspect of our approach is that, from a geometric point of view, we answer the most difficult case of the predicate via implicitly performing point locations on an appropriately defined subdivision of the place induced by the Voronoi circle implicated in the Incircle predicate.
منابع مشابه
ACS Algorithms for Complex Shapes with Certified Numerics and Topology Algebraic tools for the Voronoi diagram of ellipses, leading to an experimental implementation
We study the four predicates required for the Voronoi diagram of ellipses in the plane, under the Euclidean metric, based on an incremental algorithm. The report concentrates on InCircle, which is the hardest predicate: it decides the position of a query ellipse relative to the Voronoi circle of three given ellipses. The implementation of InCircle combines a certified numeric algorithm with alg...
متن کاملAn Efficient Algorithm for the InCircle Predicate among Smooth Closed Curves
This paper concentrates on the InCircle predicate which is used for the computation of the Voronoi diagram of smooth closed curves. The predicate decides the position of a query object relative to the Voronoi circle of three given ones. We focus on (nonintersecting) ellipses but our method extends to arbitrary closed smooth curves, given in parametric representation. We describe an efficient al...
متن کاملThe L∞ (L1) Farthest Line-Segment Voronoi Diagram
We present structural properties of the farthest line-segment Voronoi diagram in the piecewise linear L∞ and L1 metrics, which are computationally simpler than the standard Euclidean distance and very well suited for VLSI applications. We introduce the farthest line-segment hull, a closed polygonal curve that characterizes the regions of the farthest line-segment Voronoi diagram, and is related...
متن کاملExact Voronoi diagram of smooth convex pseudo-circles: General predicates, and implementation for ellipses
We examine the problem of computing exactly the Voronoi diagram (via the dual Delaunay graph) of a set of, possibly intersecting, smooth convex pseudocircles in the Euclidean plane, given in parametric form. Pseudo-circles are (convex) sites, every pair of which has at most two intersecting points. The Voronoi diagram is constructed incrementally. Our first contribution is to propose robust and...
متن کاملL∞ Voronoi Diagrams and Applications to VLSI Layout and Manufacturing
In this paper we address the L∞ Voronoi diagram of polygonal objects and present applications in VLSI layout and manufacturing. We show that in L∞ the Voronoi diagram of segments consists only of straight line segments and is thus much simpler to compute than its Euclidean counterpart. Moreover, it has a natural interpretation. In applications where Euclidean precision is not particularly impor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1107.5204 شماره
صفحات -
تاریخ انتشار 2011