Semi-Supervised Learning for Improving Prediction of HIV Drug Resistance

نویسندگان

  • Juliane Perner
  • André Altmann
  • Thomas Lengauer
چکیده

Abstract: Resistance testing is an important tool in today’s anti-HIV therapy management for improving the success of antiretroviral therapy. Routinely, the genetic sequence of viral target proteins is obtained. These sequences are then inspected for mutations that might confer resistance to antiretroviral drugs. However, interpretation of the genomic data is challenging. In recent years, approaches that employ supervised statistical learning methods were made available to assist the interpretation of the complex genetic information (e.g. geno2pheno and VircoTYPE). However, these methods rely on large amounts of labeled training data, which are expensive and labor-intensive to obtain. This work evaluates the application of semi-supervised learning (SSL) for improving the prediction of resistance from the viral genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning

Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Ther...

متن کامل

Asymptotic Analysis of Generative Semi-Supervised Learning

Semi-supervised learning has emerged as a popular framework for improving modeling accuracy while controlling labeling cost. Based on an extension of stochastic composite likelihood we quantify the asymptotic accuracy of generative semi-supervised learning. In doing so, we complement distributionfree analysis by providing an alternative framework to measure the value associated with different l...

متن کامل

Improving prediction accuracy of drug activities by utilising unlabelled instances with feature selection

Molecular activities can be predicted by Quantitative Structure Activity Relationship (QSAR). Because of the high cost of experiments, the number of drug molecules with known activity is much less than that of unknown, to predict molecular activities utilising unlabelled instances will be an interesting issue. Here, Semi-Supervised Learning (SSL) is introduced and a SSL method, Co-Training is i...

متن کامل

Semi-supervised Drug-Protein Interaction Prediction from Heterogeneous Spaces∗

Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interaction while myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization semi-supervised learning method is presented to tackle this issue by using label...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009