An Experimental Study of Mist/Air Film Cooling On a Flat Plate with Application to Gas Turbine Airfoils- Part 2: Two-Phase Flow Measurements and Droplet Dynamics
نویسندگان
چکیده
A Phase Doppler Particle Analyzer (PDPA) system is employed to measure the two-phase mist flow behavior including flow velocity field, droplet size distribution, droplet dynamics, and turbulence characteristics. Based on the droplet measurements made through PDPA, a projected profile describing how the air-mist coolant jet flow spreads and eventually blends into the hot main flow is proposed. This proposed profile is found to be well supported by the measurement results of the turbulent Reynolds stresses. The coolant film envelope is identified with shear layers characterized by higher magnitudes of turbulent Reynolds stresses. In addition, the separation between the mist droplet layer and the coolant air film is identified through the droplet measurements—large droplets penetrate through the air coolant film layer and travel further into the main flow. With the proposed air-mist film profile, the heat transfer results on the wall presented in Part 1 are re-examined and more in-depth physics is revealed. It is found that the location of optimum cooling effectiveness is coincided with the point where the air-mist coolant stream starts to bend back towards the surface. Thus, the data suggests that the “bending back” film pattern is critical in keeping the mist droplets close to the surface, which improves the cooling effectiveness for mist cooling.
منابع مشابه
An Experimental Study of Mist / Air Film Cooling On a Flat Plate With Application to Gas
Film cooling is a cooling technique widely used in highperformance gas turbines to protect the turbine airfoils from being damaged by hot flue gases. Motivated by the need to further improve film cooling in terms of both cooling effectiveness and coolant coverage area, the mist/air film cooling scheme is investigated through experiments in this study. A small amount of tiny water droplets (7% w...
متن کاملTwo-phase Flow Simulation of Mist Film Cooling with Different Wall Heating Conditions
Effective cooling of gas turbine combustor liners, combustor transition pieces, turbine vanes (nozzles) and blades (buckets) is a critical task to protect these components from the flue gas at extremely high temperature. Air film cooling has been successfully used to cool these hot sections for the last half century. However, the net benefits from the traditional methods seem to be marginally i...
متن کاملSimulation of Mist Film Cooling at Gas Turbine Operating Conditions
Air film cooling has been successfully used to cool gas turbine hot sections for the last half century. A promising technology is proposed to enhance air film cooling with water mist injection. Numerical simulations have shown that injecting a small amount of water droplets into the cooling air improves film-cooling performance significantly. However, previous studies were conducted at conditio...
متن کاملShape optimization of impingement and film cooling holes on a flat plate using a feedforward ANN and GA
Numerical simulations of a three-dimensional model of impingement and film cooling on a flat plate are presented and validated with the available experimental data. Four different turbulence models were utilized for simulation, in which SST had the highest precision, resulting in less than 4% maximum error in temperature estimation. A simplified geometry with periodic boundary conditions is de...
متن کاملAn Investigation of Applicability of Transporting Water Mist for Cooling Turbine Vanes
This paper presents a numerical study to investigate the feasibility of transporting mist through the internal cooling channel in high-pressure turbine vanes for film cooling over the vane's surface. The idea of using mist film cooling to enhance conventional air cooling has been proven to be a feasible technique in the laboratory conditions and by computational simulations. However, there is a...
متن کامل