Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts.

نویسندگان

  • Kristin McLarty
  • Bart Cornelissen
  • Zhongli Cai
  • Deborah A Scollard
  • Danny L Costantini
  • Susan J Done
  • Raymond M Reilly
چکیده

UNLABELLED Pertuzumab is a HER2 dimerization inhibitor that binds to an epitope unique from that of trastuzumab. Our objective was to determine whether SPECT with (111)In-diethylenetriaminepentaacetic acid-pertuzumab ((111)In-DTPA-pertuzumab) could sensitively detect an early molecular response to trastuzumab manifested by HER2 downregulation and a later tumor response revealed by a decreased number of HER2-positive viable tumor cells. METHODS Changes in HER2 density in SKBr-3 and MDA-MB-361 BC cells exposed to trastuzumab (14 microg/mL) in vitro were measured by saturation binding assays using (111)In-DTPA-pertuzumab and by confocal immunofluorescence microscopy and flow cytometry with fluorescein isothiocyanate-labeled HER2/neu antibodies. Imaging of HER2 downregulation was studied in vivo in athymic mice with subcutaneous MDA-MB-361 tumors treated for 3 d with trastuzumab (4 mg/kg) or nonspecific human IgG (hIgG) or phosphate-buffered saline (PBS). Imaging of tumor response to trastuzumab was studied in mice bearing subcutaneous MDA-MB-361 xenografts treated with trastuzumab (4 mg/kg), followed by weekly doses of nonspecific hIgG or rituximab or PBS (2 mg/kg). Mice were imaged on a micro-SPECT/CT system at 72 h after injection of (111)In-DTPA-pertuzumab. Tumor and normal-tissue biodistribution was determined. RESULTS (111)In-DTPA-pertuzumab saturation binding to SKBr-3 and MDA-MB-361 cells was significantly decreased at 72 h after exposure in vitro to trastuzumab (14 microg/mL), compared with untreated controls (62% +/- 2%, P < 0.0001; 32% +/- 9%, P < 0.0002, respectively). After 3 d of trastuzumab, in vivo tumor uptake of (111)In-DTPA-pertuzumab decreased 2-fold in trastuzumab- versus PBS-treated mice (13.5 +/- 2.6 percentage injected dose per gram [%ID/g] vs. 28.5 +/- 9.1 %ID/g, respectively; P < 0.05). There was also a 2-fold decreased tumor uptake in trastuzumab- versus PBS-treated mice by image volume-of-interest analysis (P = 0.05), suggesting trastuzumab-mediated HER2 downregulation. After 3 wk of trastuzumab, tumor uptake of (111)In-DTPA-pertuzumab decreased 4.5-fold, compared with PBS-treated mice (7.6 +/- 0.4 vs. 34.6 +/- 9.9 %ID/g, respectively; P < 0.001); this decrease was associated with an almost-completed eradication of HER2-positive tumor cells determined immunohistochemically. CONCLUSION (111)In-DTPA-pertuzumab sensitively imaged HER2 downregulation after 3 d of treatment with trastuzumab and detected a reduction in viable HER2-positive tumor cells after 3 wk of therapy in MDA-MB-361 human breast cancer xenografts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging subcutaneous HER2-positive tumor xenografts in athymic mice using microSPECT/CT or microPET/CT

BACKGROUND Our objective was to compare 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging small or large s.c. tumor xenografts in athymic mice that display a wide range of human epidermal growth factor receptor-2 (HER2) expression using microSPECT/CT or microPET/CT. METHODS Trastuzumab Fab were labeled with 111In or 64Cu by conjugation to 1,4,7,10-tetraazacyclododecane N, N', N'', N''...

متن کامل

Dual-Receptor-Targeted Radioimmunotherapy of Human Breast Cancer Xenografts in Athymic Mice Coexpressing HER2 and EGFR Using 177Lu- or 111In-Labeled Bispecific Radioimmunoconjugates.

UNLABELLED One mechanism of resistance to trastuzumab in human epidermal growth factor receptor-2 (HER2)-positive breast cancer (BC) is increased epidermal growth factor receptor (EGFR) expression. We have developed (111)In-labeled bispecific radioimmunoconjugates (bsRICs) that bind HER2 and EGFR on BC cells by linking trastuzumab Fab fragments through a polyethylene glycol (PEG24) spacer to ep...

متن کامل

Antitumor effects and normal tissue toxicity of 111In-labeled epidermal growth factor administered to athymic mice bearing epidermal growth factor receptor-positive human breast cancer xenografts.

UNLABELLED The epidermal growth factor receptor (EGFR) is an attractive target for the design of radiotherapeutic agents for breast cancer because it is present on almost all estrogen receptor-negative, hormone-resistant tumors with a poor prognosis. In this study, we describe the antitumor effects and normal tissue toxicity of the novel Auger electron-emitting radiopharmaceutical (111)In-label...

متن کامل

Evaluation of 89Zr-pertuzumab in Breast Cancer Xenografts

Pertuzumab is a monoclonal antibody that binds to HER2 and is used in combination with another HER2-specific monoclonal antibody, trastuzumab, for the treatment of HER2+ metastatic breast cancer. Pertuzumab binds to an HER2 binding site distinct from that of trastuzumab, and its affinity is enhanced when trastuzumab is present. We aim to exploit this enhanced affinity of pertuzumab for its HER2...

متن کامل

Pre-clinical evaluation of [111In]-benzyl-DOTA-Z(HER2:342), a potential agent for imaging of HER2 expression in malignant tumors.

Imaging of expression of human epidermal growth factor receptor type 2 (HER2) in breast carcinomas may help to select patients eligible for trastuzumab therapy. The Affibody molecule Z(HER2:342) is a small (7-kDa) non-immunoglobulin affinity protein, which binds to HER2 with a picomolar affinity. Previously, a benzyl-DTPA conjugate of Z(HER2:342) was labeled with 111In and demonstrated good tar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 50 8  شماره 

صفحات  -

تاریخ انتشار 2009