Characterization of Matrigel interfaces during defined human embryonic stem cell culture.

نویسندگان

  • Naomi T Kohen
  • Lauren E Little
  • Kevin E Healy
چکیده

Differences in attachment, proliferation, and differentiation were measured for human embryonic stem (hES) cells cultured on various substrata coated with Matrigel, a blend of extracellular matrix proteins derived from murine tumor cells. The authors observed that hES cells attach and grow poorly on Matrigel adsorbed onto polystyrene, while they proliferate when exposed to Matrigel adsorbed onto glass or oxygen plasma treated polystyrene (e.g., "tissue culture" treated polystyrene). Furthermore, hES cells grown on the Matrigel-coated tissue culture polystyrene are less likely to differentiate than those grown on the Matrigel-coated glass. To assess the mechanism for these observations, they replicated the cell culture interface in a quartz crystal microbalance with dissipation monitoring. In addition, they used ellipsometry and scanning electron microscopy to determine the thickness and topography of Matrigel on the varying surfaces. Matrigel formed a viscoelastic multilayer with similar thickness on all three surfaces; however, the network structure was different, where the adsorbed proteins formed a globular network on polystyrene, and fibrillar networks on the hydrophilic substrates. Matrigel networks on glass were denser than on oxygen plasma treated polystyrene, suggesting that the density and structure of the Matrigel network affects stem cell differentiation, where a denser network promoted uncontrolled hES cell differentiation and did not maintain the self-renewal phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Characterization of integrin engagement during defined human embryonic stem cell culture.

Human embryonic stem (hES) cells are pluripotent, capable of differentiating into any cell type of the body, and therefore have the ability to provide insights into mechanisms of human development and disease, as well as to provide a potentially unlimited supply of cells for cell-based therapy and diagnostics. Knowledge of the adhesion receptors that hES cells employ to engage extracellular mat...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

Comparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis

Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biointerphases

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2009