Genotypic Variation in Grain P Loading across Diverse Rice Growing Environments and Implications for Field P Balances

نویسندگان

  • Elke Vandamme
  • Matthias Wissuwa
  • Terry Rose
  • Ibnou Dieng
  • Khady N. Drame
  • Mamadou Fofana
  • Kalimuthu Senthilkumar
  • Ramaiah Venuprasad
  • Demba Jallow
  • Zacharie Segda
  • Lalith Suriyagoda
  • Dinarathna Sirisena
  • Yoichiro Kato
  • Kazuki Saito
چکیده

More than 60% of phosphorus (P) taken up by rice (Oryza spp.) is accumulated in the grains at harvest and hence exported from fields, leading to a continuous removal of P. If P removed from fields is not replaced by P inputs then soil P stocks decline, with consequences for subsequent crops. Breeding rice genotypes with a low concentration of P in the grains could be a strategy to reduce maintenance fertilizer needs and slow soil P depletion in low input systems. This study aimed to assess variation in grain P concentrations among rice genotypes across diverse environments and evaluate the implications for field P balances at various grain yield levels. Multi-location screening experiments were conducted at different sites across Africa and Asia and yield components and grain P concentrations were determined at harvest. Genotypic variation in grain P concentration was evaluated while considering differences in P supply and grain yield using cluster analysis to group environments and boundary line analysis to determine minimum grain P concentrations at various yield levels. Average grain P concentrations across genotypes varied almost 3-fold among environments, from 1.4 to 3.9 mg g-1. Minimum grain P concentrations associated with grain yields of 150, 300, and 500 g m-2 varied between 1.2 and 1.7, 1.3 and 1.8, and 1.7 and 2.2 mg g-1 among genotypes respectively. Two genotypes, Santhi Sufaid and DJ123, were identified as potential donors for breeding for low grain P concentration. Improvements in P balances that could be achieved by exploiting this genotypic variation are in the range of less than 0.10 g P m-2 (1 kg P ha-1) in low yielding systems, and 0.15-0.50 g P m-2 (1.5-5.0 kg P ha-1) in higher yielding systems. Improved crop management and alternative breeding approaches may be required to achieve larger reductions in grain P concentrations in rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic variation and association analysis of some important traits related to grain in rice (Oryza sativa L.) germplasm

The identification of genomic loci involved in control of quantitative traits receives growing attention in plant molecular breeding. The present study was carried out to evaluate the genetic variability among 48 rice genotypes and determine the genomic regions associated with ten grain related important traits. A total number of 63 alleles were detected by 18 selected SSR markers from differen...

متن کامل

Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India.

The concentration of arsenic (As) in rice grains has been identified as a risk to human health. The high proportion of inorganic species of As (As(i)) is of particular concern as it is a nonthreshold, class 1 human carcinogen. To be able to breed rice with low grain As, an understanding of genetic variation and the effect of different environments on genetic variation is needed. In this study, ...

متن کامل

Can natural variation in grain P concentrations be exploited in rice breeding to lower fertilizer requirements?

Agricultural usage of phosphorus (P) is largely driven by the amount of P removed from fields in harvested plant matter as offtake needs to be balanced by P fertilizer application. Reducing P concentration in grains is a way to decrease P offtake and reduce P fertilizer requirements or soil P mining where insufficient P is applied. Our objective was to assesses the genotypic variation for grain...

متن کامل

Functional properties of waxy wheat flours: genotypic and environmental effects

A set of waxy (amylose-free) experimental spring wheats (Triticum aestivum L.) of diverse parentage were grown, along with two nonwaxy and two partial waxy check cultivars, at diverse North American cultural environments. Grain yield and functional attributes of derived flours were determined. Average grain yield of the waxy lines did not differ significantly from the average yield of the check...

متن کامل

Evaluation of Seed Yield Stability of Chickpea Genotypes Using GGE Biplot Method

In this study, 14 advanced chickpea genotypes selected from regional experiments with Adel and Azad, as control cultivars, were cultivated in a randomized complete block design with three replications in eight environments (Gonbad, Gachsaran, Ilam and Khorramabad in three, two, two and one years, respectively) in Iran during 2017-2020 growing seasons. Combined analysis of variance showed that e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016