Palmprint Recognitionvia Bandlet, Ridgelet, Wavelet and Neural Network

نویسندگان

  • Mohanad A. M. Abukmeil
  • Hatem Elaydi
  • Mohammed Alhanjouri
چکیده

Palmprint recognition has emerged as a valid biometric based personal identification tool. Palmprints with high resolution features such minutia points, ridges and singular points or low resolution features such as wrinkles and principals determine their applications. In this paper a 700nm spectral band PolyU hyperspectral palmprint database is utilized and the multiscale band let image transform is utilized in features extraction; moreover, its results are compared with the ridgelet and 2D discrete wavelet results. The size of features is reduced using principle component analysis and linear discriminate analysis; in addition, a feed forward back-propagation neural network is used as a classifier. The results show that the recognition rate accuracy of the band let transform outperforms others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palmprint Recognition by using Bandlet, Ridgelet, Wavelet and Neural Network

Palmprint recognition has emerged as a substantial biometric based personal identification. Tow types of biometrics palmprint feature. high resolution feature that includes: minutia points, ridges and singular points that could be extracted for forensic applications. Moreover, low resolution feature such as wrinkles and principal lines which could be extracted for commercial applications. This ...

متن کامل

Palmprint recognition using multiscale transform, linear discriminate analysis, and neural network

Palmprint recognition is gaining grounds as a biometric system for forensic and commercial applications. Palmprint recognition addressed the recognition issue using low and high resolution images. This paper uses PolyU hyperspectral palmprint database, and applies back-propagation neural network for recognition, linear discriminate analysis for dimensionality reduction, and 2D discrete wavelet,...

متن کامل

Palmprint Recognition Using Deep Scattering Convolutional Network

Palmprint recognition has drawn a lot of attention during the recent years. Many algorithms have been proposed for palmprint recognition in the past, majority of them being based on features extracted from the transform domain. Many of these transform domain features are not translation or rotation invariant, and therefore a great deal of preprocessing is needed to align the images. In this pap...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015