The Thue–Siegel–Roth Theorem

نویسندگان

  • Daniel Ishak
  • DANIEL ISHAK
چکیده

In this paper we will give a proof of the Thue-Siegel-Roth Theorem, which states that for any algebraic number α and any ǫ > 0 there exists only a finite number of pairs of coprime integers p, q such that ∣ α − p q ∣ ∣ < 1 q2+ǫ . We will follow the proof as it is presented Leveque’s book, [8, ch 4]. This proof also deals with the more general case when p q is allowed to be an algebraic number in some fixed number field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt

A proof of the transcendence of a real number ξ based on the Thue–Siegel–Roth–Schmidt method involves generally a sequence (αn)n≥1 of algebraic numbers of bounded degree or a sequence (xn)n≥1 of integer r-tuples. In the present paper, we show how such a proof can produce a transcendence measure for ξ, if one is able to quantify the growth of the heights of the algebraic numbers αn or of the poi...

متن کامل

Some remarks on diophantine equations and diophantine approximation

We give many equivalent statements of Mahler’s generalization of the fundamental theorem of Thue. In particular, we show that the theorem of Thue–Mahler for degree 3 implies the theorem of Thue for arbitrary degree ≥ 3, and we relate it with a theorem of Siegel on the rational integral points on the projective line P(K) minus 3 points. Classification MSC 2010: 11D59; 11J87; 11D25

متن کامل

Elliptic Curves Seminar: Siegel’s Theorem

1.1. Statement of theorems. Siegel’s theorem, in its simplest form, is the fact that a nonsingular elliptic curve contains only finitely many integer-valued points. All versions of this result rely on theorems (of varying strength) in diophantine approximation; thus, in section 1.3, we will sketch a proof of Roth’s Theorem, which is the strongest such result that will be needed. We will then pr...

متن کامل

On the Product of Consecutive Integers

of k consecutive integers is never an l-th power if k > 1, 1 > 1 2 ) . RIGGE 3 ) and a few months later I 1 ) proved that Ak(n) is never a square, and later RIDGE and 14) proved using the Thue-Siegel theorem that for every l > 2 there exists a k0(l) so that for every k > k0(l) A k(n) is not an l-th power. In 1940 SIEGEL and I proved that there is a constant c so that for k > c, l > 1 A k(n) is ...

متن کامل

Arithmetic Groups and Lehmer’s Conjecture

Arithmetic groups are a rich class of groups where connections between topology and number theory are showcased in a particularly striking way. One construction of these groups is motivated by the modular group, PSL2(Z). The group of orientation preserving isometries of the hyperbolic upper half plane, H, is isomorphic to PSL2(R). Since Z is a discrete subgroup of R it follows that PSL2(Z) is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008