Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions
نویسندگان
چکیده
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm’s accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms Y. Shen (B) · D. Cornford Non-linearity and Complexity Research Group, Aston University, Birmingham, UK e-mail: [email protected] D. Cornford e-mail: [email protected] M. Opper Artificial Intelligence Group, Technical University Berlin, Berlin, Germany e-mail: [email protected] C. Archambeau Department of Computer Science, University College London, London, UK e-mail: [email protected]
منابع مشابه
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...
متن کاملApproximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothing-spline models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, and geostatistical models. In this paper we consider app...
متن کاملLikelihood based inference for observed and partially observed diffusions
This paper provides methods for carrying out likelihood based inference on non-linear observed and partially observed non-linear diffusions. The diffusions can potentially be non-stationary. The methods are based on innovative Markov chain Monte Carlo methods combined with an augmentation strategy. We study the performance of the methods as the degree of augmentation goes to infinity and find t...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملCollapsed Variational Bayesian Inference for PCFGs
This paper presents a collapsed variational Bayesian inference algorithm for PCFGs that has the advantages of two dominant Bayesian training algorithms for PCFGs, namely variational Bayesian inference and Markov chain Monte Carlo. In three kinds of experiments, we illustrate that our algorithm achieves close performance to the Hastings sampling algorithm while using an order of magnitude less t...
متن کامل