Transcriptionally inactive oocyte-type 5S RNA genes of Xenopus laevis are complexed with TFIIIA in vitro.
نویسندگان
چکیده
An extract from whole oocytes of Xenopus laevis was shown to transcribe somatic-type 5S RNA genes approximately 100-fold more efficiently than oocyte-type 5S RNA genes. This preference was at least 10-fold greater than the preference seen upon microinjection of 5S RNA genes into oocyte nuclei or upon in vitro transcription in an oocyte nuclear extract. The approximately 100-fold transcriptional bias in favor of the somatic-type 5S RNA genes observed in vitro in the whole oocyte extract was similar to the transcriptional bias observed in developing Xenopus embryos. We also showed that in the whole oocyte extract, a promoter-binding protein required for 5S RNA gene transcription, TFIIIA, was bound both to the actively transcribed somatic-type 5S RNA gene and to the largely inactive oocyte-type 5S RNA genes. These findings suggest that the mechanism for the differential expression of 5S RNA genes during Xenopus development does not involve differential binding of TFIIIA to 5S RNA genes.
منابع مشابه
Early replication and expression of oocyte-type 5S RNA genes in a Xenopus somatic cell line carrying a translocation.
In Xenopus somatic cells, the somatic-type 5S RNA genes replicate early in S phase, bind the transcription factor TFIIIA, and are expressed; in contrast, the late replicating oocyte-type genes do not bind TFIIIA and are transcriptionally inactive. These facts support a model in which the order of replication of the somatic-type versus the oocyte-type 5S genes causes their differential expressio...
متن کاملBoth the 5S rRNA gene and the AT-rich flanks of xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of pol III-type genes in in vitro reconstituted chromatin.
Incorporation of somatic histone H1 into chromatin during embryogenesis of Xenopus laevis results in repression of transcription of the oocyte- but not the somatic-type 5S rRNA genes. We showed earlier that a similar effect of the H1 observed in chromatin reconstituted on circular plasmids in vitro depends on its binding to the AT-rich flanks of the oocyte-type 5S rRNA gene. H1 binding results ...
متن کاملRole of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos.
The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutan...
متن کاملAn alternative protein factor which binds the internal promoter of Xenopus 5S ribosomal RNA genes.
In small oocytes of Xenopus species, two sets of 5S RNA genes, oocyte-type and somatic-type, are fully activated. The 5S RNA transcripts are temporarily stored, half in association with TFIIIA to form a 7S particle, the other half in association with tRNA and two proteins (p48 and p43) to form a 42S particle. It has been established previously that TFIIIA binds to the internal control region of...
متن کاملThe AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro.
In vivo, histone H1 plays an active role in establishing the transcriptionally repressed chromatin state of the oocyte-type 5S RNA genes in the early stages of Xenopus development. By using fully defined in vitro system of chromatin assembly on plasmids with cloned oocyte- or somatic-type 5S gene repeats we found that the oocyte repeat which comprises a 120 bp oocyte-type 5S RNA gene placed wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 7 10 شماره
صفحات -
تاریخ انتشار 1987