Dopamine activates amiloride-sensitive sodium channels in alveolar type I cells in lung slice preparations.
نویسندگان
چکیده
Active Na+ reabsorption by alveolar epithelial cells generates the driving force used to clear fluids from the air space. Using single-channel methods, we examined epithelial Na+ channel (ENaC) activity of alveolar type I (AT1) cells from live 250- to 300-microm sections of lung tissue, circumventing concerns that protracted cell isolation procedures might compromise the innate transport properties of native lung cells. We used fluorescein-labeled Erythrina crystagalli lectin to positively identify AT1 cells for single-channel patch-clamp analysis. We demonstrated, for the first time, single-channel recordings of highly selective and nonselective amiloride-sensitive ENaC channels (HSC and NSC, respectively) from AT1 cells in situ, with mean conductances of 8.2+/-2.5 and 22+/-3.2 pS, respectively. Additionally, 25 nM amiloride in the patch electrode blocked Na+ channel activity in AT1 cells. Immunohistochemical studies demonstrated the presence of dopamine D1 and D2 receptors on the surface of AT1 cells, and single-channel recordings showed that 10 microM dopamine increased Na+ channel activity [product of the number of channels and single-channel open probability (NPo)] from 0.31+/-0.19 to 0.60+/-0.21 (P<0.001). The D1 receptor antagonist SCH-23390 (10 microM) blocked the stimulatory effect of dopamine on AT1 cells, but the D2 receptor antagonist sulpiride did not.
منابع مشابه
Dopamine regulation of amiloride-sensitive sodium channels in lung cells.
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport. Therefore, we examined apical and basolateral dopamine's effect on apical, highly selective sodium channels [epithelial sodium channels (ENaC)] in monolayers of an alveolar type 2 cel...
متن کاملBiophysical properties and molecular characterization of amiloride-sensitive sodium channels in A549 cells.
Amiloride-sensitive Na(+) channels, present in fetal and adult alveolar epithelial type II (ATII) cells, play a critical role in the reabsorption of fetal fluid shortly after birth and in limiting the extent of alveolar edema across the adult lung. Because of the difficulty in isolating and culturing ATII cells, there is considerable interest in characterizing the properties of ion channels and...
متن کاملENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated m...
متن کاملALUNG April 22/4
Lazrak, A., A. Samanta, and S. Matalon. Biophysical properties and molecular characterization of amiloridesensitive sodium channels in A549 cells. Am J Physiol Lung Cell Mol Physiol 278: L848–L857, 2000.—Amiloride-sensitive Na1 channels, present in fetal and adult alveolar epithelial type II (ATII) cells, play a critical role in the reabsorption of fetal fluid shortly after birth and in limitin...
متن کاملActions of Hydrogen Sulfide on Sodium Transport Processes across Native Distal Lung Epithelia (Xenopus laevis)
Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 291 4 شماره
صفحات -
تاریخ انتشار 2006