Frequent Set Meta Mining: Towards Multi-Agent Data Mining
نویسندگان
چکیده
In this paper we describe the concept of Meta ARM in the context of its objectives and challenges and go on to describe and analyse a number of potential solutions. Meta ARM is defined as the process of combining the results of a number of individually obtained Associate Rule Mining (ARM) operations to produce a composite result. The typical scenario where this is desirable is in multi-agent data mining where individual agents wish to preserve the security and privacy of their raw data but are prepared to share data mining results. Four Meta ARM algorithms are described: a Brute Force approach, an Apriori approach and two hybrid techniques. A “bench mark” system is also described to allow for appropriate comparison. A complete analysis of the algorithms is included that considers the effect of: the number of data sources, the number of records in the data sets and the number of attributes represented.
منابع مشابه
Agent Based Frequent Set Meta Mining: Introducing EMADS
In this paper we: introduce EMADS, the Extendible Multi-Agent Data mining System, to support the dynamic creation of communities of data mining agents; explore the capabilities of such agents and demonstrate (by experiment) their application to data mining on distributed data. Although, EMADS is not restricted to one data mining task, the study described here, for the sake of brevity, concentra...
متن کاملTowards Cooperative Predictive Data Mining in Competitive Environments
We study the problem of predictive data mining in the competitive multi-agent setting, in which each agent is assumed to have some partial knowledge needed for correctly classifying a set of unlabelled examples. The agents are self-interested and therefore need to reason about the trade-offs between increasing their classification accuracy by collaborating with other agents and disclosing their...
متن کاملMining maximal frequent itemsets from data streams
Frequent pattern mining from data streams is an active research topic in data mining. Existing research efforts often rely on a two-phase framework to discover frequent patterns: (1) using internal data structures to store meta-patterns obtained by scanning the stream data; and (2) re-mining the meta-patterns to finalize and output frequent patterns. The defectiveness of such a two-phase framew...
متن کاملTowards Mining for Influence in a Multi Agent Environment
Multi agent learning systems pose an interesting set of problems: in large environments agents may develop localised behaviour patterns that are not necessarily optimal; in a pure agent system there is no globally aware element which can identify and eliminate retrograde behaviour; and as systems scale they may produce large amounts of data, a system may have in the order of 10 cells with 10 ag...
متن کاملMeta learning in hybrid multi-agent systems designed for data mining
Introduction Discovering patterns in data usually requires deeper understanding of both data and data mining methods. We have developed a multi-agent system (MAS) which is able to meta learn over different configurations of computational methods (such as multilayer perceptron or RBF network, embedded in agents), to gather experience, and to utilize results of previous tasks in order to find the...
متن کامل