Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates

نویسندگان

  • Jose M Carmena
  • Mikhail A Lebedev
  • Roy E Crist
  • Joseph E O'Doherty
  • David M Santucci
  • Dragan F Dimitrov
  • Parag G Patil
  • Craig S Henriquez
  • Miguel A. L Nicolelis
چکیده

Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain-machine interface (BMIc) that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles) from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimo...

متن کامل

Towards a Naturalistic Brain-Machine Interface: Hybrid Torque and Position Control Allows Generalization to Novel Dynamics

Realization of reaching and grasping movements by a paralytic person or an amputee would greatly facilitate her/his activities of daily living. Towards this goal, control of a computer cursor or robotic arm using neural signals has been demonstrated in rodents, non-human primates and humans. This technology is commonly referred to as a Brain-Machine Interface (BMI) and is achieved by prediction...

متن کامل

Internal models of reaching and grasping

One of the most distinguishing features of cognitive systems is the ability to predict the future course of actions and the results of ongoing behaviors, and in general to plan actions well in advance. Neuroscience has started examining the neural basis of these skills with behavioral or animal studies and it is now relatively well understood that the brain builds models of the physical world t...

متن کامل

Mental state inference using visual control parameters.

Although we can often infer the mental states of others by observing their actions, there are currently no computational models of this remarkable ability. Here we develop a computational model of mental state inference that builds upon a generic visuomanual feedback controller, and implements mental simulation and mental state inference functions using circuitry that subserves sensorimotor con...

متن کامل

Robot control system using SMR signals detection

One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2003