Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis.
نویسندگان
چکیده
We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integrated with a small volume microfluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection system that eliminates erroneous sensor responses from sample switching due to flow rate fluctuations and provides precise sample volumes down to 10 nl. Biochemical sensing is demonstrated with real-time 15-mer DNA-PNA (peptide nucleic acid) duplex hybridization measurements from different sample concentrations in a low ionic strength, and the equilibrium dissociation constant KD ≈ 140 nM has been extracted from the experimental data using the first order Langmuir binding model. Chemical sensing is demonstrated with pH measurements from different injected samples in flow that have sensitivities consistent with the gate-oxide materials. A differential sensor measurement configuration results in a 30× reduction in sensor drift. The integrated label-free analysis platform is suitable for a wide range of small volume chemical and biochemical analyses.
منابع مشابه
A simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملA simulation study on the performance of various label-free electronic biosensors
The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...
متن کاملC3an36586g 3221..3229
We present a label-free (bio)chemical analysis platform that uses all-electrical silicon nanowire sensor arrays integratedwith a small volumemicrofluidic flow-cell for real-time (bio)chemical analysis and detection. The integrated sensing platform contains an automated multi-sample injection system that eliminates erroneous sensor responses from sample switching due to flow rate fluctuations an...
متن کاملNpgrj_Nprot_227 1711..1724
Detection and quantification of biological and chemical species are central to many areas of healthcare and the life sciences, ranging from diagnosing disease to discovery and screening of new drug molecules. Semiconductor nanowires configured as electronic devices have emerged as a general platform for ultra-sensitive direct electrical detection of biological and chemical species. Here we desc...
متن کاملFabrication of silica nanotube arrays from vertical silicon nanowire templates.
A simple thermal oxidation-etching process was developed to translate vertical silicon nanowire arrays into silica nanotube arrays. The obtained nanotubes perfectly retain the orientation of original silicon nanowire arrays. The inner tube diameter ranges from 10 to 200 nm. High-temperature oxidation produces relative thick, rigid, and pinhole-free walls that are made of condensed silica. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 138 11 شماره
صفحات -
تاریخ انتشار 2013