Crack Spacing in Strained Films
نویسندگان
چکیده
Consider a thin film resting on a relatively thick substrate. When the substrate is subjected to an axial strain transverse cracks, normal to the direction, of the applied strain may appear in the film. It is observed that, for a given strain, the spacing between such cracks is uniform, with a clearly identifiable characteristic length scale that can be used to provide bounds on the spacing. Further, as the strain is increased, there is a densification of the cracks up to a saturation limit. Beyond the saturation limit additional strain produces no further cracks and the characteristic crack length scale for the given system remains fixed. This paper presents analytical models that can be used to predict the characteristic length scale both at the saturation limit and during the densification process. The models are shown to be applicable across a wide range of length scales; with abilities to determine the crack space length scale in both asphalt pavements (~100m) subjected to a thermal loading and strained ceramic films (~100μm).
منابع مشابه
In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films
Free-standing nanocrystalline Al thin films have been strained in situ in a transmission electron microscope at room-temperature. Extensive grain-boundary migration accompanies the in situ loading and has been observed to occur preferentially at crack tips and only in the presence of the applied stress. This grain growth precedes dislocation activity, and measured boundary velocities are greate...
متن کاملNonequilibrium scale selection mechanism for columnar jointing.
Crack patterns in laboratory experiments on thick samples of drying cornstarch are geometrically similar to columnar joints in cooling lava found at geological sites such as the Giant's Causeway. We present measurements of the crack spacing from both laboratory and geological investigations of columnar jointing, and show how these data can be collapsed onto a single master scaling curve. This i...
متن کاملMechanical properties of amorphous indium-gallium-zinc oxide thin films on compliant substrates for flexible optoelectronic devices
Amorphous indium–gallium–zinc-oxide (a-IGZO) thin films were deposited using RF magnetron sputtering on polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) flexible substrates and their mechanical flexibility investigated using uniaxial tensile and buckling tests coupled with in situ optical microscopy. The uniaxial fragmentation test demonstrated that the crack onset strain of ...
متن کاملGuided fracture of films on soft substrates to create micro/nano-feature arrays with controlled periodicity
While the formation of cracks is often stochastic and considered undesirable, controlled fracture would enable rapid and low cost manufacture of micro/nanostructures. Here, we report a propagation-controlled technique to guide fracture of thin films supported on soft substrates to create crack arrays with highly controlled periodicity. Precision crack patterns are obtained by the use of strateg...
متن کاملColumnar grown copper films on polyimides strained beyond 100%
Many flexible electronic devices contain metal films on polymer substrates to satisfy requirements for both electrical conductivity and mechanical durability. Despite numerous trials to date, the stretchability of metal interconnects remains an issue. In this paper, we have demonstrated a stretchable metal interconnect through control of the texture of a copper film with columnar grown grains o...
متن کامل