Bayesian Sequential Change Diagnosis

نویسندگان

  • Savas Dayanik
  • Christian Goulding
  • H. Vincent Poor
چکیده

Sequential change diagnosis is the joint problem of detection and identification of a sudden and unobservable change in the distribution of a random sequence. In this problem, the common probability law of a sequence of i.i.d. random variables suddenly changes at some disorder time to one of finitely many alternatives. This disorder time marks the start of a new regime, whose fingerprint is the new law of observations. Both the disorder time and the identity of the new regime are unknown and unobservable. The objective is to detect the regime-change as soon as possible, and, at the same time, to determine its identity as accurately as possible. Prompt and correct diagnosis is crucial for quick execution of the most appropriate measures in response to the new regime, as in fault detection and isolation in industrial processes, and target detection and identification in national defense. The problem is formulated in a Bayesian framework. An optimal sequential decision strategy is found, and an accurate numerical scheme is described for its implementation. Geometrical properties of the optimal strategy are illustrated via numerical examples. The traditional problems of Bayesian change-detection and Bayesian sequential multi-hypothesis testing are solved as special cases. In addition, a solution is obtained for the problem of detection and identification of component failure(s) in a system with suspended animation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دربارۀ شناسایی بیزیِ دنباله‌ای نقطۀ تغییر

The problems of sequential change-point have several important applications in quality control, signal processing, and failure detection in industry and finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time  τ, the process behavior changes and the distribution of the data changes from p0 to p1. Two cases are consi...

متن کامل

Bayesin estimation and prediction whit multiply type-II censored sample of sequential order statistics from one-and-two-parameter exponential distribution

In this article introduce the sequential order statistics. Therefore based on multiply Type-II censored sample of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two- parameter exponential distributions under the assumption that the prior distribution is given by an inverse gamma distribution and the Bayes estimator with respect to squared error loss ...

متن کامل

A BAYESIAN APPROACH TO SEQUENTIAL SURVEILLANCE IN EXPONENTIAL FAMILIES By

We describe herein a Bayesian change-point model and the associated recursive formulas for the estimated time-varying parameters and the posterior probability that a change-point has occurred at a particular time. The proposed model is a variant of that of Chernoff and Zacks (1964) for the case of normal means with known common variance. It considers more generally the multiparameter exponentia...

متن کامل

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Asymptotically optimal Bayesian sequential change detection and identification rules

We study the joint problem of sequential change detection and multiple hypothesis testing. Suppose that the common distribution of a sequence of i.i.d. random variables changes suddenly at some unobservable time to one of finitely many distinct alternatives, and one needs to both detect and identify the change at the earliest possible time. We propose computationally efficient sequential decisi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2008