Stochastic Block Models with Multiple Continuous Attributes
نویسندگان
چکیده
The stochastic block model (SBM) is a probabilistic model for community structure in networks. Typically, only the adjacency matrix is used to perform SBM parameter inference. In this paper, we consider circumstances in which nodes have an associated vector of continuous attributes that are also used to learn the node-to-community assignments and corresponding SBM parameters. While this assumption is not realistic for every application, our model assumes that the attributes associated with the nodes in a network’s community can be described by a common multivariate Gaussian model. In this augmented, attributed SBM, the objective is to simultaneously learn the SBM connectivity probabilities with the multivariate Gaussian parameters describing each community. While there are recent examples in the literature that combine connectivity and attribute information to inform community detection, our model is the first augmented stochastic block model to handle multiple continuous attributes. This provides the flexibility in biological data to, for example, augment connectivity information with continuous measurements from multiple experimental modalities. Because the lack of labeled network data often makes community detection results difficult to validate, we highlight the usefulness of our model for two network prediction tasks: link prediction and collaborative filtering. As a result of fitting this attributed stochastic block model, one can predict the attribute vector or connectivity patterns for a new node in the event of the complementary source of information (connectivity or attributes, respectively). We also highlight two biological examples where the attributed stochastic block model provides satisfactory performance in the link prediction and collaborative filtering tasks.
منابع مشابه
(Q,r) Stochastic Demand Inventory Model With Exact Number of Cycles
In most stochastic inventory models, such as continuous review models and periodic review models, it has been assumed that the stockout period during a cycle is small enough to be neglected so that the average number of cycles per year can be approximated as D/Q, where D is the average annual demand and Q is the order quantity. This assumption makes the problem more tactable, but it should not ...
متن کامل(Q,r) Stochastic Demand Inventory Model With Exact Number of Cycles
In most stochastic inventory models, such as continuous review models and periodic review models, it has been assumed that the stockout period during a cycle is small enough to be neglected so that the average number of cycles per year can be approximated as D/Q, where D is the average annual demand and Q is the order quantity. This assumption makes the problem more tactable, but it should not ...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملJoint Modeling of Longitudinal Relational Data and Exogenous Variables
A fundamental aspect of relational data, such as data from social network along with the attributes of its constituent actors, is the possibility of dependence between network and the attributes over time. This article proposes a time varying stochastic framework that jointly models co-evolution of the network and the attributes over time. To be more specific, we propose time varying stochastic...
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کامل