High-dimensional Joint Sparsity Random Effects Model for Multi-task Learning
نویسندگان
چکیده
Joint sparsity regularization in multi-task learning has attracted much attention in recent years. The traditional convex formulation employs the group Lasso relaxation to achieve joint sparsity across tasks. Although this approach leads to a simple convex formulation, it suffers from several issues due to the looseness of the relaxation. To remedy this problem, we view jointly sparse multi-task learning as a specialized random effects model, and derive a convex relaxation approach that involves two steps. The first step learns the covariance matrix of the coefficients using a convex formulation which we refer to as sparse covariance coding; the second step solves a ridge regression problem with a sparse quadratic regularizer based on the covariance matrix obtained in the first step. It is shown that this approach produces an asymptotically optimal quadratic regularizer in the multitask learning setting when the number of tasks approaches infinity. Experimental results demonstrate that the convex formulation obtained via the proposed model significantly outperforms group Lasso (and related multi-stage formulations).
منابع مشابه
Nonparametric regression and classification with joint sparsity constraints
We propose new families of models and algorithms for high-dimensional nonparametric learning with joint sparsity constraints. Our approach is based on a regularization method that enforces common sparsity patterns across different function components in a nonparametric additive model. The algorithms employ a coordinate descent approach that is based on a functional soft-thresholding operator. T...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملExploiting random projections and sparsity with random forests and gradient boosting methods - Application to multi-label and multi-output learning, random forest model compression and leveraging input sparsity
Within machine learning, the supervised learning field aims at modeling the input-output relationship of a system, from past observations of its behavior. Decision trees characterize the input-output relationship through a series of nested $if-then-else$ questions, the testing nodes, leading to a set of predictions, the leaf nodes. Several of such trees are often combined together for state-of-...
متن کاملExclusive Sparsity Norm Minimization with Random Groups via Cone Projection
Many practical applications such as gene expression analysis, multi-task learning, image recognition, signal processing, and medical data analysis pursue a sparse solution for the feature selection purpose and particularly favor the nonzeros evenly distributed in different groups. The exclusive sparsity norm has been widely used to serve to this purpose. However, it still lacks systematical stu...
متن کاملTesting Multidimensional and Hierarchical Model of School Motivation Questionnaire
Abstract Objective: One of the theories that motivation into a multi-objective model considers, Mayer's theory of personal investment. This theory is a useful framework for evaluating multi-dimensional and hierarchical nature of goal provides the motivation. The aim of this study is to investigate a multi-dimensional and hierarchical structure of achievement goal orientation. Methods: The popul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.6814 شماره
صفحات -
تاریخ انتشار 2013