Optimization of Process Parameters in Drilling of GFRP Composites Drilled by an End Mill

نویسندگان

  • J Babu
  • Defu Liu
  • Yongjun Tang
چکیده

Abstract— Due to the superior physical and mechanical properties Glass fiber-reinforced (GFRP) composite materials are very attractive for applications like aerospace and air craft structural components. This results a large number of research papers on machining of these composite laminates. Out of all the machining operations, most commonly used operation is drilling. However, drilling operation is hard to carry out due to drilling–induced delamination. To increase drilling efficiency of GFRP composite laminates with the least waste and damages, it is essential to understand the drilling behavior by conducting a large number of drilling experiments and drilling parameters such as feed rate and spindle speed should be optimized. This paper presents delamination study of composite materials by conducting drilling experiments using Taguchi’s L25, 5-level orthogonal array and Analysis of variance (ANOVA) was used to analyze the data obtained from the experiments and finally determine the optimal drilling parameters in drilling GFRP composite materials. Experiments were also conducted to determine whether varying feed & spindle speed during drilling could reduce the delamination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization on Delamination of Cutting Parameter during Drilling on Gfrp Plastics Based on Taguchi Method

Drilling of glass fibre reinforced plastic (GFRP) composite is different from metallic materials due to its mechanical properties. The drilling of this material may generate delamination of drilled holes on workpiece. The purpose of this paper is to investigate the influence of the cutting parameters, such as cutting speed and feed rate, point angle of drill and material thickness on delaminati...

متن کامل

Analysis of Milling Process Parameters and their Influence on Glass Fiber Reinforced Polymer Composites (RESEARCH NOTE)

Milling of fiber reinforced polymer composites is of great importance for integrated composites with other mating parts. Improper selection of cutting process parameters, excessive cutting forces and other machining conditions would result in rejection of components. Therefore, machining conditions are optimized to reduce the machining forces and damages. This work reports practical experiments...

متن کامل

Drilling Of Tio2 and Zns Filled Gfrp Composites: A Taguchi Approach

The main affecting parameter for Delamination of the composites and in turn the failure of composites is the Thrust force. In the present work an attempt has been made in order to investigate the Thrust force generated during drilling of the TiO2 and ZnS filled Glass Fabric Reinforced Polymer Matrix Composites (GFRP). The volume fractions in the matrix were chosen as 1, 2 and3%. A plan of exper...

متن کامل

Determination of optimum parameters on delamination in drilling of GFRP composites by Taguchi method

Drilling is one of the important machining processes in hole making operations. Delamination is a vital problem during any drilling operation. It causes structural integrity reduction and poor assembly tolerance as well as potential for long-term performance deterioration. As a result, drilling of any material requires dimensional stability and interface quality. In this study, glass fibre rein...

متن کامل

Optimization of Dogleg Severity in Directional Drilling Oil Wells Using Particle Swarm Algorithm (Short Communication)

The dogleg severity is one of the most important parameters in directional drilling. Improvement of these indicators actually means choosing the best conditions for the directional drilling in order to reach the target point. Selection of high levels of the dogleg severity actually means minimizing well trajectory, but on the other hand, increases fatigue in drill string, increases torque and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013