Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump
نویسندگان
چکیده
Direct numerical simulations of a turbulent boundary layer over a bump were performed to examine the effects of surface longitudinal curvature on wall pressure fluctuations (pw) and flow induced noise. Turbulence statistics and frequency spectra were obtained to elucidate the response of wall pressure fluctuations to the longitudinal curvature and to the corresponding pressure gradient. Wall pressure fluctuations were significantly enhanced near the trailing edge of the bump, where the boundary layer was subjected to a strong adverse pressure gradient. Large-scale structures in the distribution of wall pressure fluctuations were observed to grow rapidly near the trailing edge of the bump and convect downstream. Acoustic sources of the Lighthill equations were investigated in detail at various longitudinal surface curvatures. The acoustic sources (S) were highest near the trailing edge of the bump, where the r.m.s. wall pressure fluctuations were greatest. The maximum correlation coefficient between pw and S was located just above the location of maximum wall pressure fluctuations. Far-field acoustic density fluctuations were computed using the Lighthill acoustic analogy. We found that the surface dipole is dominant in the total acoustic field. The contribution of the volume quadrupoles to the total acoustic field gradually increases with decreasig the radius of the surface curvature (δ/R).
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملAerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy
The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...
متن کاملWall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies
This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. ...
متن کاملLarge-eddy simulation of transonic turbulent flow over a bump
Transonic turbulent boundary-layer flow over a circular-arc bump has been computed by high-resolution large-eddy simulation of the compressible Navier–Stokes equations. The inflow turbulence was prescribed using a new technique, in which known dynamical features of the inner and outer part of the boundary-layer were exploited to produce a standard turbulent boundary-layer within a short distanc...
متن کاملA Novel Similarity Solution of Turbulent Boundary Layer Flow over a Flat Plate
In this paper, the similarity solution of turbulent boundary layer flow on the flat plate with zero pressure gradients is presented. By employing similarity variables the governing partial differential equations are transformed to ordinary ones with inconsistent coefficients and solved numerically with the use of Runge–Kutta and shooting methods in conjunction with trial and error procedure. Fo...
متن کامل