Recurrent Gaussian Processes

نویسندگان

  • César Lincoln C. Mattos
  • Zhenwen Dai
  • Andreas C. Damianou
  • Jeremy Forth
  • Guilherme De A. Barreto
  • Neil D. Lawrence
چکیده

We define Recurrent Gaussian Processes (RGP) models, a general family of Bayesian nonparametric models with recurrent GP priors which are able to learn dynamical patterns from sequential data. Similar to Recurrent Neural Networks (RNNs), RGPs can have different formulations for their internal states, distinct inference methods and be extended with deep structures. In such context, we propose a novel deep RGP model whose autoregressive states are latent, thereby performing representation and dynamical learning simultaneously. To fully exploit the Bayesian nature of the RGP model we develop the Recurrent Variational Bayes (REVARB) framework, which enables efficient inference and strong regularization through coherent propagation of uncertainty across the RGP layers and states. We also introduce a RGP extension where variational parameters are greatly reduced by being reparametrized through RNN-based sequential recognition models. We apply our model to the tasks of nonlinear system identification and human motion modeling. The promising obtained results indicate that our RGP model maintains its highly flexibility while being able to avoid overfitting and being applicable even when larger datasets are not available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Neural Networks: A Replacement for Gaussian Processes?

Gaussian processes have been favourably compared to backpropagation neural networks as a tool for regression. We show that a recurrent neural network can implement exact Gaussian process inference using only linear neurons that integrate their inputs over time, inhibitory recurrent connections, and one-shot Hebbian learning. The network amounts to a dynamical system which relaxes to the correct...

متن کامل

ADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes

In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.06644  شماره 

صفحات  -

تاریخ انتشار 2015