Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein.
نویسندگان
چکیده
To elucidate the function of keratins 8 and 18 (K8/18), major components of the intermediate filaments of simple epithelia, we searched for K8/18-binding proteins by screening a yeast two-hybrid library. We report here that human Mrj, a DnaJ/Hsp40 family protein, directly binds to K18. Among the interactions between DnaJ/Hsp40 family proteins and various intermediate filament proteins that we tested using two-hybrid methods, Mrj specifically interacted with K18. Immunostaining with anti-Mrj antibody showed that Mrj colocalized with K8/18 filaments in HeLa cells. Mrj was immunoprecipitated not only with K18, but also with the stress-induced and constitutively expressed heat shock protein Hsp/c70. Mrj bound to K18 through its C terminus and interacted with Hsp/c70 via its N terminus, which contains the J domain. Microinjection of anti-Mrj antibody resulted in the disorganization of K8/18 filaments, without effects on the organization of actin filaments and microtubules. Taken together, these results suggest that Mrj may play an important role in the regulation of K8/18 filament organization as a K18-specific co-chaperone working together with Hsp/c70.
منابع مشابه
Characterization of a brain-enriched chaperone, MRJ, that inhibits Huntingtin aggregation and toxicity independently.
Molecular chaperones are involved in a wide range of cellular events, such as protein folding and oligomeric protein complex assembly. DnaK- and DnaJ-like proteins are the two major classes of molecular chaperones in mammals. Recent studies have shown that DnaJ-like family proteins can inhibit polyglutamine aggregation, a hallmark of many neurodegenerative diseases, including Huntington's disea...
متن کاملEmerging roles and underlying molecular mechanisms of DNAJB6 in cancer
DNAJB6 also known as mammalian relative of DnaJ (MRJ) encodes a highly conserved member of the DnaJ/Hsp40 family of co-chaperone proteins that function with Hsp70 chaperones. DNAJB6 is widely expressed in all tissues, with higher expression levels detected in the brain. DNAJB6 is involved in diverse cellular functions ranging from murine placental development, reducing the formation and toxicit...
متن کاملThe Mrj co-chaperone mediates keratin turnover and prevents the formation of toxic inclusion bodies in trophoblast cells of the placenta.
Defects in protein-folding and -degradation machinery have been identified as a major cause of intracellular protein aggregation and of aggregation-associated diseases. In general, it remains unclear how these aggregates are harmful to normal cellular function. We demonstrate here that, in the developing placenta of the mouse, the absence of the Mrj (Dnajb6) co-chaperone prevents proteasome deg...
متن کاملDnaJ/Hsp40 Family and Parkinson's Disease
Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder after Alzheimer's disease. The precise molecular and cellular basis underlying PD still remains uncertain; however, accumulating evidence suggests that neuronal cell death is caused by a combination of environmental and genetic factors. Over the previous two decades, more than 20 genes have been identified...
متن کاملIdentification of Regions Involved in Substrate Binding and Dimer Stabilization within the Central Domains of Yeast Hsp40 Sis1
Protein folding, refolding and degradation are essential for cellular life and are regulated by protein homeostatic processes such those that involve the molecular chaperone DnaK/Hsp70 and its co-chaperone DnaJ. Hsp70 action is initiated when proteins from the DnaJ family bind an unfolded protein for delivery purposes. In eukaryotes, the DnaJ family can be divided into two main groups, Type I a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 44 شماره
صفحات -
تاریخ انتشار 2000