Three-Dimensional Bin Packing in Mixed-case Palletization

نویسنده

  • Yi Feng Yan
چکیده

The Three Dimensional Bin Packing Problem (3DBPP) is within one of the broad categories of the Bin Packing Problem. The other broad categories include the One Dimensional and the Two Dimensional Bin Packing Problem. As we live in a three dimensional world, the 3DBPP can model a variety of real world problems. Some of the popular applications of the 3DBPP include the Container Loading Problem and the Pallet Packing Problem. The objective of the 3DBPP is to minimize the number of containers or pallets used given a certain number of items, while respecting the non-overlapping constraints along all three dimensions. The Open Dimension Problem (ODP), is a special case of the 3DBPP, where a given set of cargo is packed onto a single container, with one or more variable dimensions. The Single Bin Size Bin Packing Problem (SBSBPP) is another special case, where a given set of cargo is packed in bins of the same size, with the objective of minimizing the number of bins used. The SBSBPP is more difficult to solve than the ODP, as items are packed in multiple bins in the SBSBPP and in only one bin in the ODP. In this thesis, we first propose a mixed-integer programming model for the ODP, where the objective is to minimize the highest point within the bin. We then provide a number of enhancements to improve the model. Later, a number of heuristics are proposed to find good feasible solutions within reasonable computational time. Finally the solution of the ODP is used to provide a solution to the SBSBPP. The proposed approach is compared to well-known approaches from the literature on a standard data set. The approach was able to give reasonably good solutions to most instances within a given time frame, especially when the number of items per bin increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three dimensional Bin Packing Problem applied to air transport

Packing boxes into containers is a daily process in many different fields and especially in transport. However, the particular case of air transport brings some new constraints such as the stability or the fragility of the cargo. The distribution of the weight has also to be considered. Moreover, this special case also brings some data such as the dimensions of the possible containers, called U...

متن کامل

Extending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items

In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...

متن کامل

New Lower Bounds for the Three-dimensional Orthogonal Bin Packing Problem

In this paper, we consider the three-dimensional orthogonal bin packing problem, which is a generalization of the well-known bin packing problem. We present new lower bounds for the problem and demonstrate that they improve the best previous results. The asymptotic worst-case performance ratio of the lower bounds is also proved. In addition, we study the non-oriented model, which allows items t...

متن کامل

A Parallel Genetic Algorithm for Three Dimensional Bin Packing with Heterogeneous Bins

This paper presents a parallel genetic algorithm for three dimensional bin packing with heterogeneous bins using Hadoop Map-Reduce framework. The most common three dimensional bin packing problem which packs given set of boxes into minimum number of equal sized bins is proven to be NP Hard. The variation of three dimensional bin packing problem that allows heterogeneous bin sizes and rotation o...

متن کامل

A Linear Programming Approach for the Three-Dimensional Bin-Packing Problem

In this paper we consider the three-dimensional bin packing problem (3D-BPP), when the bins are identical with the aim of minimizing the number of the used bins. We introduce a mixed-integer linear programming formulation (MILP1). Some special valid inequalities will be presented in order to improve the relaxed lower bound of MILP1. A large set of experimental tests has been carried out. The ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015