Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET.

نویسندگان

  • Eric P Visser
  • Mariëlle E P Philippens
  • Laura Kienhorst
  • Johannes H A M Kaanders
  • Frans H M Corstens
  • Lioe-Fee de Geus-Oei
  • Wim J G Oyen
چکیده

UNLABELLED Tumor delineation using noninvasive medical imaging modalities is important to determine the target volume in radiation treatment planning and to evaluate treatment response. It is expected that combined use of CT and functional information from 18F-FDG PET will improve tumor delineation. However, until now, tumor delineation using PET has been based on static images of 18F-FDG standardized uptake values (SUVs). 18F-FDG uptake depends not only on tumor physiology but also on blood supply, distribution volume, and competitive uptake processes in other tissues. Moreover, 18F-FDG uptake in tumor tissue and in surrounding healthy tissue depends on the time after injection. Therefore, it is expected that the glucose metabolic rate (MRglu) derived from dynamic PET scans gives a better representation of the tumor activity than does SUV. The aim of this study was to determine tumor volumes in MRglu maps and to compare them with the values from SUV maps. METHODS Twenty-nine lesions in 16 dynamic 18F-FDG PET scans in 13 patients with non-small cell lung carcinoma were analyzed. MRglu values were calculated on a voxel-by-voxel basis using the standard 2-compartment 18F-FDG model with trapping in the linear approximation (Patlak analysis). The blood input function was obtained by arterial sampling. Tumor volumes were determined in SUV maps of the last time frame and in MRglu maps using 3-dimensional isocontours at 50% of the maximum SUV and the maximum MRglu, respectively. RESULTS Tumor volumes based on SUV contouring ranged from 1.31 to 52.16 cm3, with a median of 8.57 cm3. Volumes based on MRglu ranged from 0.95 to 37.29 cm3, with a median of 3.14 cm3. For all lesions, the MRglu volumes were significantly smaller than the SUV volumes. The percentage differences (defined as 100% x (V MRglu - V SUV)/V SUV, where V is volume) ranged from -12.8% to -84.8%, with a median of -32.8%. CONCLUSION Tumor volumes from MRglu maps were significantly smaller than SUV-based volumes. These findings can be of importance for PET-based radiotherapy planning and therapy response monitoring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of metabolic tumor volume: static versus dynamic FDG scans

BACKGROUND Metabolic tumor volume assessment using positron-emission tomography [PET] may be of interest for both target volume definition in radiotherapy and monitoring response to therapy. It has been reported, however, that metabolic volumes derived from images of metabolic rate of glucose (generated using Patlak analysis) are smaller than those derived from standardized uptake value [SUV] i...

متن کامل

18F-FDG PET/CT of advanced gastric carcinoma and association of HER2 expression with standardized uptake value

Objective(s): Expression of HER2 in gastric carcinoma has direct prognostic and therapeutic implications in patient management. The aim of this study is to determine whether a relationship exists between standardized uptake value (SUV) and expression of HER2 in advanced gastric carcinoma. Methods: We analyzed the 18F-FDG PET/CT results of 109 patients that underwent gastrectomy for advanced gas...

متن کامل

The influence of using different reconstruction algorithms on sensitivity of quantitative 18F-FDG-PET volumetric measures to background activity variation

Introduction: This study aims to investigate the influence of background activity variation on image quantification in differently reconstructed PET/CT images. Methods: Measurements were performed on a Discovery-690 PET/CT scanner using a custom-built NEMA-like phantom. A background activity level of 5.3 and 2.6 kBq/ml 18F-FDG were applied. Ima...

متن کامل

Background-Based Delineation of Internal Tumor Volumes on Static Positron Emission Tomography in a Phantom Study

Objective(s): Considering the fact that the standardized uptake value (SUV) of a normal lung tissue is expressed as x±SD, x+3×SD could be considered as the threshold value to outline the internal tumor volume (ITV) of a lung neoplasm. Methods: Three hollow models were filled with 55.0 kBq/mL fluorine18- fluorodeoxyglucose (18F-FDG) to represent tumors. The models were fixed to a barrel filled w...

متن کامل

Application of in vivo imaging techniques to monitor therapeutic efficiency of PLX4720 in an experimental model of microsatellite instable colorectal cancer

OBJECTIVES Patient-derived tumor cell lines are a powerful tool to analyze the sensitivity of individual tumors to specific therapies in mice. An essential prerequisite for such an approach are reliable quantitative techniques to monitor tumor progression in vivo. METHODS We have employed HROC24 cells, grown heterotopically in NMRI Foxn1nu mice, as a model of microsatellite instable colorecta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 49 6  شماره 

صفحات  -

تاریخ انتشار 2008