Trivial Stationary Solutions to the Kuramoto-sivashinsky and Certain Nonlinear Elliptic Equations
نویسنده
چکیده
subject to appropriate initial and boundary conditions has been introduced in [15],[16] and in [23],[24] in studying phase turbulence and the flame front propagation in combustion theory. In the absence of any a priori estimates for the solutions of the scalar equation (1), most authors find it more convenient, for the mathematical study, to consider the differential form of the equation for u = ∇φ
منابع مشابه
Fixed points of a destabilized Kuramoto-Sivashinsky equation
We consider the family of destabilized Kuramoto-Sivashinsky equations in one spatial dimension ut + νuxxxx + βuxx + γuux = αu for α,ν ≥ 0 and β ,γ ∈ R. For certain parameter values, shock-like stationary solutions have been numerically observed. In this work we verify the existence of several such solutions using the framework of self-consistent bounds and validated numerics.
متن کاملApplication of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملAll meromorphic solutions of some algebraic differential equations and their applications
In this paper, we employ Nevanlinna’s value distribution theory to investigate the existence of meromorphic solutions of some algebraic differential equations. We obtain the representations of all meromorphic solutions of certain algebraic differential equations with constant coefficients and dominant term. Many results are the corollaries of our result, and we will give the complex method to f...
متن کاملNew Exact Solutions for Two Nonlinear Equations
Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutio...
متن کامل