High proportions of deleterious polymorphisms in constrained human genes.
نویسنده
چکیده
Previous studies on human mitochondrial genomes showed that the ratio of intra-specific diversities at nonsynonymous-to-synonymous positions was two to ten times higher than the ratio of interspecific divergences at these positions, suggesting an excess of slightly deleterious nonsynonymous polymorphisms. However, such an overabundance of nonsynonymous single nucleotide polymorphisms (SNPs) was not found in human nuclear genomes. Here, genome-wide estimates using >14,000 human-chimp nuclear genes and 1 million SNPs from four human genomes showed a significant proportion of deleterious nonsynonymous SNPs (∼ 15%). Importantly, this study reveals a negative correlation between the magnitude of selection pressure and the proportion of deleterious SNPs on human genes. The proportion of deleterious amino acid replacement polymorphisms is 3.5 times higher in genes under high purifying selection compared with that in less constrained genes (28% vs. 8%). These results are explained by differences in the extent of contribution of mildly deleterious mutations to diversity and substitution.
منابع مشابه
In silico analysis for determining the deleterious nonsynonymous single nucleotide polymorphisms of BRCA genes
Recent advances in DNA sequencing techniques have led to an increase in the identification of single nucleotide polymorphisms (SNPs) in BRCA1 and BRCA2 genes, but no further information regarding the deleterious probability of many of them is available (Variants of Unknown Significance/VUS). As a result, in the current study, different sequence- and structure-based computation...
متن کاملA Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes
It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...
متن کاملSelective Constraints Determine the Time Dependency of Molecular Rates for Human Nuclear Genomes
In contrast to molecular rates for neutral mitochondrial sequences, rates for constrained sites (including nonsynonymous sites, D-loop, and RNA) in the mitochondrial genome are known to vary with the time frame used for their estimation. Here, we examined this issue for the nuclear genomes using single-nucleotide polymorphisms (SNPs) from six complete human genomes of individuals belonging to d...
متن کاملComprehensive Computational Analysis of Protein Phenotype Changes Due to Plausible Deleterious Variants of Human SPTLC1 Gene
Genetic variations found in the coding and non-coding regions of a gene are known to influence the structure as well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of α-oxoamine synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT). Mutations in SPTLC1 have been associated with hereditary sensory and auto...
متن کاملPrioritization of Deleterious Variations in the Human Hypoxanthine-Guanine Phosphoribosyltransferase Gene
ABSTRACT Background and Objectives: Non-synonymous single nucleotide polymorphisms are typical genetic variations that may potentially affect the structure or function of expressed proteins, and therefore could be involved in complex disorders. A computational-based analysis has been done to evaluate the phenotypic effect of no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2011