Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ.
نویسندگان
چکیده
DC extracellular potential shifts (deltaVo) associated with spreading depression (SD) reflect massive cell depolarization, but their cellular generators remain obscure. We have recently reported that the glial specific metabolic poison fluorocitrate (FC) delivered by microdialysis in situ caused a rapid impairment of glial function followed some hours later by loss of neuronal electrogenic activity and neuron death. We have used the time windows for selective decay of cell types so created to study the relative participation of glia and neurons in SD, and we report a detailed analysis of the effects of FC on evoked SD waves and glial membrane potential (Vm). Extracellular potential (Vo), interstitial potassium concentration ([K+]o), evoked potentials, and transmembrane glial potentials were monitored in the CA1 area before, during, and after administration of FC with or without elevated K+ concentration in the dialysate. SD waves propagated faster and lasted longer during FC treatment. DeltaVo in stratum pyramidale, which normally are much shorter and of smaller amplitude than those in stratum radiatum, expanded during FC treatment to match those in stratum radiatum. The coalescing SD waves that develop late during prolonged high-K+ dialysis and are typically limited to stratum radiatum, also expanded into stratum pyramidale under the influence of FC. SD provoked in neocortex normally does not spread to the CA1, but during FC treatment it readily reached CA1 via entorhinal cortex. Once neuronal function began to deteriorate, SD waves became smaller and slower, and eventually failed to enter the region around the FC source. Slow, moderately negative deltaVo that mirrored [K+]o increments could still be recorded well after neuronal function and SD-associated Vo had disappeared. Glial cell Vm gradually depolarized during FC administration, beginning much before depression of neuronal antidromic action potentials. Calculations based on the results predict a large decrease in glial potassium content during FC treatment. The results are compatible with neurons being the major generator of the deltaVo associated with SD. We conclude that energy shortage in glial cells makes brain tissue more susceptible to SD and therefore it may increase the risk of neuron damage.
منابع مشابه
The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival.
The supporting role of glial cells in maintaining neurons and in ion homeostasis has been studied in situ by perfusing the gliotoxin fluorocitrate (FC) through a microdialysis fiber in the CA1 area of urethane-anesthetized rats. Extracellular direct current potential, extracellular potassium concentration ([K+]o) and amino acid levels, extracellular pH (pHo), and evoked field activity were stud...
متن کاملThe Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملEffect of Cannabinoid Receptor Activation on Spreading Depression
Objective(s) The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods T...
متن کاملA gliotoxin model of occipital seizures in rats
PURPOSE Intracortical microinjection of fluorocitrate, a reversible inhibitor of glial tricarboxylic acid (TCA), results in impaired glial metabolism and epileptic seizures. To determine the potential contribution of epileptic activities to the metabolic properties of fluorocitrate, we investigated the seizure-inducing property of fluorocitrate at different doses. METHODS Twenty-seven male Sp...
متن کاملAnti-inflammatory effects of essential oil, aerial parts and hairy roots extracts of Nepeta pogonosperma on rat brain mixed cells
Background and objectives: Many Nepeta species have been commonly used in Iranian folk medicine as tranquilizer, relaxant, carminative and restorative tonic for nervous and respiratory disorders. Inflammation is a problem in many diseases and has an important role in brain function that can cause neurodegenerative disorders. Inflamed glial cells can exacerbate neurodegenerative disease...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 78 1 شماره
صفحات -
تاریخ انتشار 1997