Termination of Rewriting with Right-Flat Rules Modulo Permutative Theories

نویسندگان

  • Luis Barguñó
  • Guillem Godoy
  • Eduard Huntingford
  • Ashish Tiwari
چکیده

We present decidability results for termination of classes of term rewriting systems modulo permutative theories. Termination and innermost termination modulo permutative theories are shown to be decidable for term rewrite systems (TRS) whose right-hand side terms are restricted to be shallow (variables occur at depth at most one) and linear (each variable occurs at most once). Innermost termination modulo permutative theories is also shown to be decidable for shallow TRS. We first show that a shallow TRS can be transformed into a flat (only variables and constants occur at depth one) TRS while preserving termination and innermost termination. The decidability results are then proved by showing that (a) for right-flat right-linear (flat) TRS, non-termination (respectively, innermost non-termination) implies non-termination starting from flat terms, and (b) for right-flat TRS, the existence of non-terminating derivations starting from a given term is decidable. On the negative side, we show PSPACE-hardness of termination and innermost termination for shallow right-linear TRS, and undecidability of termination

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Termination Modulo Combinations of Equational Theories (Long Version)

Rewriting with rules R modulo axioms E is a widely used technique in both rule-based programming languages and in automated deduction. Termination methods for rewriting systems modulo specific axioms E (e.g., associativity-commutativity) are known. However, much less seems to be known about termination methods that can be modular in the set E of axioms. In fact, current termination tools and pr...

متن کامل

Termination Modulo Combinations of Equational Theories

Rewriting with rules R modulo axioms E is a widely used technique in both rule-based programming languages and in automated deduction. Termination methods for rewriting systems modulo specific axioms E (e.g., associativity-commutativity) are known. However, much less seems to be known about termination methods that can be modular in the set E of axioms. In fact, current termination tools and pr...

متن کامل

Permutative rewriting and unification

Permutative rewriting provides a way of analyzing deduction modulo a theory defined by leaf-permutative equations. Our analysis naturally leads to the definition of the class of unify-stable axiom sets, in order to enforce a simple reduction strategy. We then give a uniform unification algorithm modulo theories E axiomatized this way. We prove that it computes complete sets of unifiers of simpl...

متن کامل

Unification in a Class of Permutative Theories

It has been proposed in [1] to perform deduction modulo leaf permutative theories, which are notoriously hard to handle directly in equational theorem proving. But unification modulo such theories is a difficult task, not tackled in [1]; a subclass of flat equations has been considered only recently, in [2]. Our emphasis on group theoretic structures led us in [6] to the definition of a more ge...

متن کامل

Satisfiability Modulo Constraint Handling Rules (Extended Abstract)

Satisfiability Modulo Constraint Handling Rules (SMCHR) is the integration of the Constraint Handling Rules (CHRs) solver programming language into a Satisfiability Modulo Theories (SMT) solver framework. Constraint solvers are implemented in CHR as a set of high-level rules that specify the simplification (rewriting) and constraint propagation behavior. The traditional CHR execution algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010