ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation

نویسندگان

  • Shan Zhong
  • Qian Wang
  • Dapeng Cao
چکیده

Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g(-1) at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen-Containing Functional Groups-Facilitated Acetone Adsorption by ZIF-8-Derived Porous Carbon

Nitrogen-doped porous carbon (ZC) is prepared by modification with ammonia for increasing the specific surface area and surface polarity after carbonization of zeolite imidazole framework-8 (ZIF-8). The structure and properties of these ZCs were characterized by Transmission electron microscopy, X-ray diffraction, N₂ sorption, X-ray photoelectron spectroscopy and Fourier transform infrared spec...

متن کامل

The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping.

Highly porous nitrogen-doped activated carbons (NACs) were prepared by the chemical activation of chitosan using alkali carbonates. The NACs exhibited extremely high CO2 capacities of 1.6 mmol g(-1) (15 kPa) and 4.9 mmol g(-1) (100 kPa) at 25 °C. Nitrogen atoms doped into carbon frameworks clearly enhanced CO2 adsorption at low partial pressures.

متن کامل

Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions.

Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and...

متن کامل

Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons.

The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between <0.6 nm in the case of t...

متن کامل

ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts.

Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016