Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes
نویسندگان
چکیده
A metalorganic vapor phase epitaxy-grown InGaN/GaN multiple-quantum-well (MQW) with three graded-thickness wells (the first-grown well had the greatest width) near the n-GaN was used as the active layer of an LED. For LEDs with an asymmetric quantum well (AQW), high-resolution X-ray diffraction and transmission electron microscopic reveal that the modified MQWs with a reasonable crystalline quality were coherently strained on the underlying GaN epilayers without any relaxation. In addition, the slight increase of indium segregation in the LED with an AQW may be attributed to variations in indium contents experienced during epitaxial growth of the wide well-containing MQWs. By preventing the energetic electrons from accumulating at the topmost quantum well nearest the p-GaN, the presence of light intensity roll-off in the LED with an AQW is shifted to higher currents and the corresponding maximum light output power is increased with a ratio 7.9% higher than that of normal LEDs. Finally, similar emission wavelengths were observed in the electroluminescence spectra of both LEDs, suggesting that light emitted mostly from the top quantum wells (near the p-GaN) while the emissions from the AQW region were insignificant.
منابع مشابه
Investigation of large Stark shifts in InGaN/GaN multiple quantum wells
Related Articles Effects of lateral overgrowth on residual strain and In incorporation in a-plane InGaN/GaN quantum wells on rsapphire substrates J. Appl. Phys. 113, 023506 (2013) Anisotropic lattice relaxation in non-c-plane InGaN/GaN multiple quantum wells J. Appl. Phys. 112, 033513 (2012) Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitti...
متن کاملEffects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes
Articles you may be interested in Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple...
متن کاملImproving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering
To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...
متن کاملAnalysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.
The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference tim...
متن کامل