Completeness-via-canonicity for coalgebraic logics

نویسنده

  • Fredrik Dahlqvist
چکیده

This thesis aims to provide a suite of techniques to generate completeness results for coalgebraic logics with axioms of arbitrary rank. We have chosen to investigate the possibility to generalize what is arguably one of the most successful methods to prove completeness results in ‘classical’ modal logic, namely completeness-via-canonicity. This technique is particularly well-suited to a coalgebraic generalization because of its clean and abstract algebraic formalism. In the case of classical modal logic, it can be summarized in two steps, first it isolates the purely algebraic problem of canonicity, i.e. of determining when a variety of boolean Algebras with Operators (BAOs) is closed under canonical extension (i.e. canonical). Secondly, it connects the notion of canonical varieties to that of canonical models to explicitly build models, thereby proving completeness. The classical algebraic theory of canonicity is geared towards normal logics, or, in algebraic terms, BAOs (or generalizations thereof). Most coalgebraic logics are not normal, and we thus develop the algebraic theory of canonicity for Boolean Algebra with Expansions (BAEs), or more generally for Distributive Lattice Expansions (DLEs). We present new results about a class of expansions defined by weaker preservation properties than meet or join preservation, namely (anti)-k-additive and (anti-)k-multiplicative expansions. We show how canonical and Sahlqvist equations can be built from such operations. In order to connect the theory of canonicity in DLEs and BAEs to coalgebraic logic, we choose to work in the abstract formulation of coalgebraic logic. An abstract coalgebraic logic is defined by a functor L : BA → BA, and we can heuristically separate these logics in two classes. In the first class the functor L is relatively simple, and in particular can be interpreted as defining a BAE. This class includes the predicate lifting style of coalgebraic logics. In the second class the functor L can be very complicated and the whole theory requires a different approach. This class includes the nabla style of coalgebraic logics. For simple functors, we develop results on strong completeness and then prove strong completeness-via-canonicity in the presence of canonical frame conditions for strongly complete abstract coalgebraic logics. In particular we show coalgebraic completeness-via-canonicity for Graded Modal Logic, Intuitionistic Logic, the distributive full Lambek calculus, and the logic of trees of arbitrary branching degrees defined by the List functor. These results are to the best of our knowledge, new. For a complex functor L we use an indirect approach via the notion of functor presentation. This allows us to represent L as the quotient of a much simpler polynomial functor. Polynomial functors define BAEs and can thus be treated as objects in the first class of functors, in particular we can apply all the above mentioned techniques to the logics defined by such functors. We develop techniques that ensure that results obtained for the simple presenting logic can be transferred back to the complicated presented logic. We can then prove strong-completeness-via-canonicity in the presence of canonical frame conditions for coalgebraic logics which do not define a BAE, such as the nabla coalgebraic logics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coalgebraic completeness-via-canonicity for distributive substructural logics

We prove strong completeness of a range of substructural logics with respect to their relational semantics by completeness-via-canonicity. Specifically, we use the topological theory of canonical (in) equations in distributive lattice expansions to show that distributive substructural logics are strongly complete with respect to their relational semantics. By formalizing the problem in the lang...

متن کامل

Some Sahlqvist Completeness Results for Coalgebraic Logics

This paper presents a first step towards completeness-viacanonicity results for coalgebraic modal logics. Specifically, we consider the relationship between classes of coalgebras for ω-accessible endofunctors and logics defined by Sahlqvist-like frame conditions. Our strategy is based on conjoining two well-known approaches: we represent accessible functors as (equational) quotients of polynomi...

متن کامل

Completeness via Canonicity for Distributive Substructural Logics: A Coalgebraic Perspective

We prove strong completeness of a range of substructural logics with respect to their relational semantics by completeness-viacanonicity. Specifically, we use the topological theory of canonical (in) equations in distributive lattice expansions to show that distributive substructural logics are strongly complete with respect to their relational semantics. By formalizing the problem in the langu...

متن کامل

Hypercanonicity, Extensive Canonicity, Canonicity and Strong Completeness of Intermediate Propositional Logics

A b s t r a c t. Canonicity and strong completeness are well-established notions in the literature of intermediate propositional logics. Here we propose a more refined classification about canonicity distinguishing some subtypes of canonicity, we call hypercanonicity and extensive canonicity. We provide some semantical criteria for the classification of logics according to these notions and we ...

متن کامل

Monotonic Modal Logics

Monotonic modal logics form a generalisation of normal modal logics in which the additivity of the diamond modality has been weakened to monotonicity: 3p∨3q → 3(p∨q). This generalisation means that Kripke structures no longer form an adequate semantics. Instead monotonic modal logics are interpreted over monotonic neighbourhood structures, that is, neighbourhood structures where the neighbourho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.09095  شماره 

صفحات  -

تاریخ انتشار 2015