3 Kolakoski - ( 3 , 1 ) Is a ( Deformed ) Model Set

نویسندگان

  • MICHAEL BAAKE
  • BERND SING
چکیده

Unlike the (classical) Kolakoski sequence on the alphabet {1, 2}, its analogue on {1, 3} can be related to a primitive substitution rule. Using this connection, we prove that the corresponding bi-infinite fixed point is a regular generic model set and thus has a pure point diffraction spectrum. The Kolakoski-(3, 1) sequence is then obtained as a deformation, without losing the pure point diffraction property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kolakoski-(3,1) Is a (deformed) Model Set

Unlike the (classical) Kolakoski sequence on the alphabet {1, 2}, its analogue on {1, 3} can be related to a primitive substitution rule. Using this connection, we prove that the corresponding bi-infinite fixed point is a regular generic model set and thus has a pure point diffraction spectrum. The Kolakoski-(3, 1) sequence is then obtained as a deformation, without losing the pure point diffra...

متن کامل

Letter Frequencies in the Kolakoski Sequence

The classical Kolakoski sequence K = (Kn) ∞ n=1 is the unique sequence on the alphabet {1, 2} de ned as the sequence of its own symbols' run lengths starting with a 1. The classical Kolakoski sequence was rst studied in a work by Oldenburger [1], where it appears as the unique solution to the problem of a trajectory on the alphabet {1, 2} which is identical to its exponent trajectory. The name ...

متن کامل

Properties of the Extremal Infinite Smooth Words

Smooth words are connected to the Kolakoski sequence. We construct the maximal and the minimal infinite smooth words, with respect to the lexicographical order. The naive algorithm generating them is improved by using a reduction of the De Bruijn graph of their factors. We also study their Lyndon factorizations. Finally, we show that the minimal smooth word over the alphabet {1, 3} belongs to t...

متن کامل

Smooth infinite words over $n$-letter alphabets having same remainder when divided by $n$

Brlek et al. (2008) studied smooth infinite words and established some results on letter frequency, recurrence, reversal and complementation for 2-letter alphabets having same parity. In this paper, we explore smooth infinite words over n-letter alphabet {a1, a2, · · · , an}, where a1 < a2 < · · · < an are positive integers and have same remainder when divided by n. And let ai = n · qi + r, qi ...

متن کامل

A Recursive Formula for the Kolakoski Sequence A000002

We present a recursive formula for the nth term of the Kolakoski sequence. Using this formula, it is easy to find recursions for the number of ones in the first n terms and for the sum of the first n terms of the Kolakoski sequence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004