Genetic algorithms based robust frequency estimation of sinusoidal signals with stationary errors

نویسندگان

  • Amit Mitra
  • Debasis Kundu
چکیده

In this paper, we consider the fundamental problem of frequency estimation of multiple sinusoidal signals with stationary errors. We propose genetic algorithm and outlier-insensitive criterion function based technique for the frequency estimation problem. In the simulation studies and real life data analysis, it is observed that the proposed genetic algorithm based robust frequency estimators are able to resolve frequencies of the sinusoidal model with high degree of accuracy. Among the proposed methods, the genetic algorithm based least squares estimator, in the no-outlier scenario, provides efficient estimates, in the sense that their mean square errors attain the corresponding Cram er-Rao lower bounds. In the presence of outliers, the proposed robust methods perform quite well and seem to have a fairly high breakdown point with respect to level of outlier contamination. The proposed methods significantly do not depend on the initial guess values required for other iterative frequency estimation methods. & 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal parameter estimation using fourth order statistics: multiplicative and additive noise environment

Parameter estimation of various multi-component stationary and non-stationary signals in multiplicative and additive noise is considered in this paper. It is demonstrated that the parameters of complex sinusoidal signal, complex frequency modulated (FM) sinusoidal signal and complex linear chirp signal in presence of additive and multiplicative noise can be estimated using a new definition of t...

متن کامل

Sinusoidal Parameter Extraction and Component Selection in a Non Stationary Model

In this paper, we introduce a new analysis technique particularly suitable for the sinusoidal modeling of non-stationary signals. This method, based on amplitude and frequency modulation estimation, aims at improving traditional Fourier parameters and enables us to introduce a new peak selection process, so that only peaks having coherent parameters are considered in subsequent stages (e.g. par...

متن کامل

Genetic algorithm and M-estimator based robust sequential estimation of parameters of nonlinear sinusoidal signals

Estimation of parameters of nonlinear superimposed sinusoidal signals is an important problem in digital signal processing. In this paper, we consider the problem of estimation of parameters of real valued sinusoidal signals. We propose a real-coded genetic algorithm based robust sequential estimation procedure for estimation of signal parameters. The proposed sequential method is based on elit...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

Multicomponent noisy signal adaptive instantaneous frequency estimation using components time support information

This study proposes an adaptive method for components instantaneous frequency (IF) estimation of noisy non-stationary multicomponent signals, combined with the components time-support estimation method based on the shorttime Rényi entropy (STRE). Components localisation and separation are done using a double-direction component tracking and extraction method presented here, while the IF estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2010