Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors.
نویسندگان
چکیده
A major fraction of intracellular protein degradation is mediated by the proteasome. Successful degradation of these substrates requires ubiquitination and delivery to the proteasome followed by protein unfolding and disassembly of the multiubiquitin chain. Enzymes, such as Rpn11, dismantle multiubiquitin chains, and mutations can affect proteasome assembly and activity. We report that different rpn11 mutations can affect proteasome interaction with ubiquitinated proteins. Moreover, proteasomes are unstable in rpn11-1 and do not form productive interactions with multiubiquitinated proteins despite high levels in cell extracts. However, increased levels of ubiquitinated proteins were found associated with shuttle factors. In contrast to rpn11-1, proteasomes expressing a catalytically inactive mutant (rpn11(AXA)) were more stable and bound very high amounts of ubiquitinated substrates. Expression of the carboxyl-terminal domain of Rpn11 partially suppressed the growth and proteasome stability defects of rpn11-1. These results indicate that ubiquitinated substrates are preferentially delivered to intact proteasome.
منابع مشابه
Rad23 promotes the targeting of proteolytic substrates to the proteasome.
Rad23 contains a ubiquitin-like domain (UbL(R23)) that interacts with catalytically active proteasomes and two ubiquitin (Ub)-associated (UBA) sequences that bind Ub. The UBA domains can bind Ub in vitro, although the significance of this interaction in vivo is poorly understood. Rad23 can interfere with the assembly of multi-Ub chains in vitro, and high-level expression caused stabilization of...
متن کاملThe proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates
Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin-proteasome system (UPS), the...
متن کامل1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain
The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-ter...
متن کاملMultiple Proteasome-Interacting Proteins Assist the Assembly of the Yeast 19S Regulatory Particle
The 26S proteasome is a highly conserved multisubunit protease that degrades ubiquitinated proteins in eukaryotic cells. The 26S proteasome consists of the proteolytic core particle (CP) and one or two 19S regulatory particles (RPs). Although the mechanisms of CP assembly are well described, the mechanism of RP assembly is largely unknown. Here, we show that four proteasome-interacting proteins...
متن کاملProteasome Regulation by ADP-Ribosylation
Protein degradation by the ubiquitin-proteasome system is central to cell homeostasis and survival. Defects in this process are associated with diseases such as cancer and neurodegenerative disorders. The 26S proteasome is a large protease complex that degrades ubiquitinated proteins. Here, we show that ADP-ribosylation promotes 26S proteasome activity in both Drosophila and human cells. We ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 285 11 شماره
صفحات -
تاریخ انتشار 2010