Efficient Carrier Injection, Transport, Relaxation, and Recombination Associated with a Stronger Carrier Localization and a Low Polarization Effect of Nonpolar m-plane InGaN/GaN Light-Emitting Diodes
نویسندگان
چکیده
Based on time-resolved electroluminescence (TREL) measurement, more efficient carrier injection, transport, relaxation, and recombination associated with a stronger carrier localization and a low polarization effect in a nonpolar m-plane InGaN/GaN light emitting diode (m-LED), compared with those in a polar c-LED, are reported. With a higher applied voltage in the c-LED, decreasing response time and rising time improve device performance, but a longer recombination time degrades luminescence efficiency. By using an m-LED with a stronger carrier localization and a low polarization effect, shorter response, rising, and recombination times provide more efficient carrier injection, transport, relaxation, and recombination. These advantages can be realized for high-power and high-speed flash LEDs. In addition, with a weaker carrier localization and a polarization effect in the c-LED, the slower radiative and faster nonradiative decay rates at a larger applied voltage result in the slower total decay rate and the lower luminescence efficiency. For the m-LED at a higher applied voltage, a slow decreasing nonradiative decay rate is beneficial to device performance, while the more slowly decreasing and overall faster radiative decay rate of the m-LED than that of the c-LED demonstrates that a stronger carrier localization and a reduced polarization effect are efficient for carrier recombination. The resulting recombination dynamics are correlated with the device characteristics and performance of the c- and m-LEDs.
منابع مشابه
Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes
In this letter, we experimentally demonstrate direct correlation between efficiency droop and carrier overflow in InGaN/GaN green light emitting diodes (LEDs). Further, we demonstrate flat external quantum efficiency curve up to 400 A/cm in a plasma assisted molecular beam epitaxy grown N-polar double quantum well LED without electron blocking layers. This is achieved by exploring the superior ...
متن کاملEffective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may d...
متن کاملThe effect of free-standing GaN substrate on carrier localization in ultraviolet InGaN light-emitting diodes
In this study, we have grown 380-nm ultraviolet light-emitting diodes (UV-LEDs) based on InGaN/AlInGaN multiple quantum well (MQW) structures on free-standing GaN (FS-GaN) substrate by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD), and investigated the relationship between carrier localization degree and FS-GaN. The micro-Raman shift peak mapping image shows low standa...
متن کاملEnhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers.
We demonstrate the high efficiency of InGaN/GaN multiple quantum wells (MQWs) light-emitting diode (LED) grown on the electrochemically etched nanoporous (NP) GaN. The photoluminescence (PL) and Raman spectra show that the LEDs with NP GaN have a strong carrier localization effect resulting from the relaxed strain and reduced defect density in MQWs. Also, the finite-difference time-domain (FDTD...
متن کاملImproving Blue InGaN Laser Diodes Performance with Waveguide Structure Engineering
To enhance lasers’ power and improve their performance, a model wasapplied for the waveguide design of 400 nm InGaN/InGaN semiconductor laser, whichis much easier to implement. The conventional and new laser structures weretheoretically investigated using simulation software PICS3D, which self-consistentlycombines 3D simulation of carrier transport, self-heating, and opt...
متن کامل