Signal peptide discrimination and cleavage site identification using SVM and NN

نویسندگان

  • Hassan B. Kazemian
  • Syed A. Yusuf
  • Kenneth White
چکیده

About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

Phylogenetic and sequence analysis of the growth hormone gene of two sturgeons, Huso huso and Acipenser Gueldenstaedtii

In this study, the cDNA Growth Hormone (cGH) of the Belugasturgeon (Husohuso) and Russian sturgeon (Acipensergueldenstaedtii) were cloned and sequenced, and phylogenetic relationships were examined using nucleic acid and amino acid sequences. The nucleotide sequence of the Beluga GH has an open reading frame of 645 nucleotides encoding a protein 214 amino acid residues. The signal peptide cleav...

متن کامل

Support Vector Machine Prediction of Signal Peptide Cleavage Site Using a New Class of Kernels for Strings

A new class of kernels for strings is introduced. These kernels can be used by any kernel-based data analysis method, including support vector machines (SVM). They are derived from probabilistic models to integrate biologically relevant information. We show how to compute the kernels corresponding to several classical probabilistic models, and illustrate their use by building a SVM for the prob...

متن کامل

Modeling peptide fragmentation with dynamic Bayesian networks for peptide identification

MOTIVATION Tandem mass spectrometry (MS/MS) is an indispensable technology for identification of proteins from complex mixtures. Proteins are digested to peptides that are then identified by their fragmentation patterns in the mass spectrometer. Thus, at its core, MS/MS protein identification relies on the relative predictability of peptide fragmentation. Unfortunately, peptide fragmentation is...

متن کامل

Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).

In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2014