Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss.
نویسندگان
چکیده
Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of surgeries annually. Here we report for the first time, in a series of in vitro accelerated fatigue studies (5-500 million cycles) with glutaraldehyde fixed porcine aortic valve bioprostheses, that the mechanical function of cardiac valve cusps caused progressive damage to the molecular structure of type I collagen as assessed by Fourier transform IR spectroscopy (FTIR). The cyclic fatigue caused a progressive loss of helicity of the bioprosthetic cuspal collagen, which was evident from FTIR spectral changes in the amide I carbonyl stretching region. Furthermore, cardiac valve fatigue in these studies also led to loss of glycosaminoglycans (GAGs) from the cuspal extracellular matrix. The GAG levels in glutaraldehyde crosslinked porcine aortic valve cusps were 65.2 +/- 8.66 microg uronic acid/10 mg of dry weight for control and 7.91 +/- 1.1 microg uronic acid/10 mg of dry weight for 10-300 million cycled cusps. Together, these molecular changes contribute to a significant gradual decrease in cuspal bending strength as documented in a biomechanical bending assay measuring three point deformation. We conclude that fatigue-induced damage to type I collagen and loss of GAGs are major contributing factors to material degeneration in bioprosthetic cardiac valve deterioration.
منابع مشابه
Trans-catheter Bioprosthetic Heart Valve Implantation in Iran (Tehran Heart Centre Experience)
Introduction: With the development of interventional cardiology in the world, in addition to coronary and aortic diseases, the treatment of heart valve diseases through catheters has recently begun. The treatment of aortic stenosis (which was only possible with open surgery and valve replacement) was first performed in the world in 2002 by Alain Cribier in France with catheter insertion of the ...
متن کاملGlycosaminoglycan-targeted fixation for improved bioprosthetic heart valve stabilization.
Numerous crosslinking chemistries and methodologies have been investigated as alternative fixatives to glutaraldehyde (GLUT) for the stabilization of bioprosthetic heart valves (BHVs). Particular attention has been paid to valve leaflet collagen and elastin stability following fixation. However, the stability of glycosaminoglycans (GAGs), the primary component of the spongiosa layer of the BHV,...
متن کاملLeaflet Geometry and Anisotropy of Bioprosthetic Heart Valves: Do They Matter?
Introduction: The most popular replacement heart valves continue to be bioprosthetic heart valves (BHV), which are fabricated from biologically derived biomaterials. While these devices benefit from low thrombogenicity and excellent hemodynamics similar to the native valve, device failure continues to be the result of leaflet structural deterioration mediated by fatigue and tissue mineralizatio...
متن کاملBioprosthetic valves and laudable inflammation?
from the University of Alberta (Canada) report a series of animal experiments designed to test the mythic role of gluteraldehyde in preventing recognition of bioprosthetic heart valve antigenicity with subsequent rejection and failure. Gluteraldehyde–cross-linked xenograft tissues (initially porcine) have been used in the manufacturing of stented (and now stentless) heart valves since 1970. Ori...
متن کاملGemella morbillorum endocarditis of pulmonary valve:a case report
BACKGROUND Pulmonary valve infective endocarditis is a rare finding for endocarditis. Infective endocarditis caused by Gemella morbillorum remains a scanty occurrence. CASE PRESENTATION This is a case reported of a 28-year-old Chinese male with endocarditis caused by pulmonary valve infection of Gemella morbillorum associated with congenital ventricular septal defect, atrial septal defect and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research
دوره 46 1 شماره
صفحات -
تاریخ انتشار 1999