Self-similar asymptotics for a class of Hele-Shaw flows driven solely by surface tension
نویسندگان
چکیده
We investigate the dynamics of relaxation, by surface tension, of a family of curved interfaces between an inviscid and viscous fluids in a Hele-Shaw cell. At t = 0 the interface is assumed to be of the form |y| = Axm, where A > 0, m ≥ 0, and x > 0. The case of 0 < m < 1 corresponds to a smooth shape, m > 1 corresponds to a cusp, whereas m = 1 corresponds to a wedge. The inviscid fluid tip retreats in the process of relaxation, forming a lobe which size grows with time. Combining analytical and numerical methods we find that, for any m, the relaxation dynamics exhibit self-similar behavior. For m 6= 1 this behavior arises as an intermediate asymptotics: at late times for 0 ≤ m < 1, and at early times for m > 1. In both cases the retreat distance and the lobe size exhibit power law behaviors in time with different dynamic exponents, uniquely determined by the value of m. In the special case of m = 1 (the wedge) the similarity is exact and holds for the whole interface at all times t > 0, while the two dynamic exponents merge to become 1/3. Surprisingly, when m 6= 1, the interface shape, rescaled to the local maximum elevation of the interface, turns out to be universal (that is, independent of m) in the similarity region. Even more remarkably, the same rescaled interface shape emerges in the case of m = 1 in the limit of zero wedge angle.
منابع مشابه
Classical solutions for Hele-Shaw models with surface tension
It is shown that surface tension effects on the free boundary are regularizing for Hele-Shaw models. This implies, in particular, existence and uniqueness of classical solutions for a large class of initial data. As a consequence, we give a rigorous proof of the fact that homogeneous Hele-Shaw flows with positive surface tension are volume preserving and area shrinking.
متن کاملTwo-dimensional Stokes and Hele-Shaw flows with free surfaces
We discuss the application of complex variable methods to Hele-Shaw flows and twodimensional Stokes flows, both with free boundaries. We outline the theory for the former, in the case where surface tension effects at the moving boundary are ignored. We review the application of complex variable methods to Stokes flows both with and without surface tension, and we explore the parallels between t...
متن کاملStability of self-similar extinction solutions for a 3D Hele-Shaw suction problem
We present a stability result for a class of non-trivial self-similarly vanishing solutions to a 3D Hele-Shaw moving boundary problem with surface tension and single-point suction. These solutions are domains that bifurcate from the trivial spherical solution. The moving domains have a geometric centre located at the suction point and they are axially symmetric. We show stability with respect t...
متن کاملLarge-time rescaling behaviors of Stokes and Hele-Shaw flows driven by injection
In this paper, we give a precise description of the rescaling behaviors of global strong polynomial solutions to the reformulation of zero surface tension Hele-Shaw problem driven by injection, the PolubarinovaGalin equation, in terms of Richardson complex moments. From past results, we know that this set of solutions is large. This method can also be applied to zero surface tension Stokes flow...
متن کاملNon-trivial self-similar extinction solutions for a 3D Hele-Shaw suction problem
We show the existence of noncircular, self-similar solutions to the three-dimensional Hele-Shaw suction problem with surface tension regularisation up to complete extinction. In an appropriate scaling, these solutions are found as bifurcation solutions to a nonlocal elliptic equation of order three. The bifurcation parameter is the ratio of the suction speed and the surface tension coefficient....
متن کامل