Support Varieties for Modules over Stacked Monomial Algebras
نویسنده
چکیده
Let Λ be a finite-dimensional (D, A)-stacked monomial algebra. In this paper, we give necessary and sufficient conditions for the variety of a simple Λ-module to be nontrivial. This is then used to give structural information on the algebra Λ, as it is shown that if the variety of every simple module is nontrivial, then Λ is a D-Koszul monomial algebra. We also provide examples of (D, A)-stacked monomial algebras which are not self-injective but nevertheless satisfy the finite generation conditions (Fg1) and (Fg2) of [2], from which we can characterize all modules with trivial variety.
منابع مشابه
Monomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملt–ANALOGS OF q–CHARACTERS OF QUANTUM AFFINE ALGEBRAS OF TYPE
We compute t–analogs of q–characters of all l–fundamental representations of the quantum affine algebras of type E (1) 6 , E (1) 7 , E (1) 8 by a supercomputer. In particular, we prove the fermionic formula for Kirillov-Reshetikhin modules conjectured by Hatayama et al. [6] for these classes of representations. We also give explicitly the monomial realization of the crystal of the corresponding...
متن کاملQuiver Varieties and Cluster Algebras
Motivated by a recent conjecture by Hernandez and Leclerc [30], we embed a Fomin-Zelevinsky cluster algebra [20] into the Grothendieck ring R of the category of representations of quantum loop algebras Uq(Lg) of a symmetric Kac-Moody Lie algebra, studied earlier by the author via perverse sheaves on graded quiver varieties [48]. Graded quiver varieties controlling the image can be identified wi...
متن کاملSome Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملCrystal Bases and Monomials for Uq(G2)-modules
In this paper, we give a new realization of crystal bases for irreducible highest weight modules over Uq(G2) in terms of monomials. We also discuss the natural connection between the monomial realization and tableau realization. Introduction In 1985, the quantum groups Uq(g), which may be thought of as q-deformations of the universal enveloping algebras U(g) of Kac-Moody algebras g, were introd...
متن کامل