Endothelin-A receptor blockade prevents left ventricular hypertrophy and dysfunction in salt-sensitive experimental hypertension.
نویسندگان
چکیده
BACKGROUND Salt-sensitive hypertension represents a major cause of left ventricular (LV) dysfunction. We therefore explored the potential effects of the selective endothelin-A (ETA) receptor antagonist darusentan on the development of hypertension, LV hypertrophy (LVH), and dysfunction in a genetic rat model of salt-sensitive hypertension. METHODS AND RESULTS Animals from the salt-sensitive Sabra rat strain (SBH/y) and the salt-resistant strain (SBN/y) were treated with either normal diet (SBH/y and SBN/y) or with deoxycorticosterone-acetate (DOCA) and salt (SBN/y-DOCA and SBH/y-DOCA). Additional groups were treated with 50 mg x kg(-1) x d(-1) of darusentan (SBH/y-DOCA-DA and SBN/y-DOCA-DA). Systolic blood pressure and LV weight increased in response to DOCA only in the SBH/y strain (+75 mm Hg and +30%; P<0.05). LV end-diastolic pressure increased and -dP/dtmax decreased in SBH/y-DOCA compared with SBH/y (P<0.05). This was paralleled by a 5-fold upregulation of LV mRNA expression of atrial natriuretic factor (ANF) and a significant reduction of sarcoplasmic reticulum (SR) Ca2+-reuptake and the SR Ca2+-ATPase to phospholamban protein ratio (-30%). Whereas treatment with darusentan in SBH/y-DOCA-DA reduced the SBP increase by 50%, LVH elevation of ANF mRNA and LV dysfunction were completely prevented (P<0.05); this was associated with a normalization of SR Ca2+-reuptake and SR Ca2+-ATPase to phospholamban ratio by darusentan (P<0.05). A moderate elevation of interstitial fibrosis in SBH/y-DOCA (P<0.05) remained unaffected by darusentan treatment. CONCLUSION In the Sabra model of salt-sensitive hypertension, ETA-receptor blockade demonstrated striking effects on the prevention of LVH and LV dysfunction beyond its considerable antihypertensive effect.
منابع مشابه
Natriuretic peptide gene expression in DOCA-salt hypertension after blockade of type B endothelin receptor.
We investigated the effect of long-term in vivo blockade of the ET-1 receptor subtype B (ET(B)) with A-192621, a selective ET(B) antagonist, on atrial and ventricular natriuretic peptide (NP) gene expression in deoxycorticosterone acetate (DOCA)-salt hypertension. In this model, stimulation of the cardiac natriuretic peptide (NP) and the endothelin system and suppression of the renin-angiotensi...
متن کاملET(A) receptor blockade prevents increased tissue endothelin-1, vascular hypertrophy, and endothelial dysfunction in salt-sensitive hypertension.
Sodium plays an important role in the pathogenesis and therapy of hypertension, a major risk factor for cardiovascular disease. This study investigated the involvement of endothelin in vascular alterations in salt-induced Dahl hypertension. Salt-sensitive (DS) and salt-resistant (DR) Dahl rats were treated with a high-sodium diet (NaCl 4%) with or without ET(A) receptor antagonist LU135252 for ...
متن کاملAltered myocardial thin-filament function in the failing Dahl salt-sensitive rat heart: amelioration by endothelin blockade.
BACKGROUND Dahl salt-sensitive rats fed a high-salt diet develop compensated left ventricular hypertrophy followed by a transition to myocardial failure. We previously reported an increase in a troponin T isoform (TnT3) and a decrease in TnT phosphorylation in failing Dahl salt-sensitive rat hearts compared with low-salt controls. The present study was undertaken to determine whether the thin f...
متن کاملAtorvastatin prevents end-organ injury in salt-sensitive hypertension: role of eNOS and oxidant stress.
Statins, inhibitors of cholesterol biosynthesis, are endowed with pleiotropic effects that may contribute to their favorable clinical results. Hypertensive Dahl salt-sensitive (DS) rats have endothelial dysfunction and cardiorenal injury associated with decreased NO bioavailability and increased superoxide (O2-) production linked to a functional upregulation of angiotensin II. We investigated w...
متن کاملCardiac microvasculature in DOCA-salt hypertensive rats : effect of endothelin ET(A) receptor antagonism.
The cardiac abnormalities associated with hypertension include left ventricular hypertrophy and vascular changes. The latter may affect the cardiac microvasculature and predispose to myocardial ischemia. To test the hypothesis that endothelin-1 contributes to changes in the microcirculation of the heart, we studied cardiac microvessels of the deoxycorticosterone acetate-salt (DOCA-salt) model o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 106 18 شماره
صفحات -
تاریخ انتشار 2002