Approximating Probabilistic Inference in Bayesian Belief Networks
نویسندگان
چکیده
A belief network comprises a graphical representation of dependencies between variables of a domain and a set of conditional probabilities associated with each dependency. Unless P=NP, an efficient, exact algorithm does not exist to compute probabilistic inference in belief networks. Stochastic simulation methods, which often improve run times, provide an alternative to exact inference algorithms. We present such a stochastic simulation algorithm 2)-BNRAS that is a randomized approximation scheme. To analyze the run time, we parameterize belief networks by the dependence value P E , which is a measure of the cumulative strengths of the belief network dependencies given background evidence E. This parameterization defines the class of f-dependence networks. The run time of 2)-BNRAS is polynomial when f is a polynomial function. Thus, the results of this paper prove the existence of a class of belief networks for which inference approximation is polynomial and, hence, provably faster than any exact algorithm.
منابع مشابه
Approximating Bayesian Belief Networks by Arc Removal
Bayesian belief networks or causal probabilistic networks may reach a certain size and complexity where the computations involved in exact probabilistic inference on the network tend to become rather time consuming. Methods for approximating a network by a simpler one allow the computational complexity of probabilistic inference on the network to be reduced at least to some extend. We propose a...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملThe complexity of approximating MAPs for belief networks with bounded probabilities
Probabilistic inference and maximum a posteriori (MAP) explanation are two important and related problems on Bayesian belief networks. Both problems are known to be NP-hard for both approximation and exact solution. In 1997, Dagum and Luby showed that efficiently approximating probabilistic inference is possible for belief networks in which all probabilities are bounded away from 0. In this pap...
متن کاملCategory: Algorithms and Architectures. Variational Belief Networks for Approximate Inference
Exact inference in large, densely connected probabilistic networks is computationally intractable, and approximate schemes are therefore of great importance. One approach is to use mean eld theory, in which the exact log-likelihood is bounded from below using a simpler approximating distribution. In the standard mean eld theory, the approximating distribution is factorial. We propose instead to...
متن کاملVariational Belief Networks for Approximate Inference
Exact inference in large, densely connected probabilistic networks is computa-tionally intractable, and approximate schemes are therefore of great importance. One approach is to use mean eld theory, in which the exact log-likelihood is bounded from below using a simpler approximating distribution. In the standard mean eld theory, the approximating distribution is factorial. We propose instead t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 15 شماره
صفحات -
تاریخ انتشار 1993