MECHANO-CHEMICAL SYNTHESIS OF NANOSTRUCTURED HYDRIDE COMPOSITES BASED ON Li-Al-N-Mg FOR SOLID STATE HYDROGEN STORAGE

نویسندگان

  • Robert A. VARIN
  • Minchul JANG
چکیده

It is observed that large quantities of hydrogen (H2) are released at ambient temperatures during the mechano-chemical synthesis of the Li-Al-N-Mg-based hydride composites using an energetic ball milling in a unique magneto-mill. For the (nLiAlH4+LiNH2; n=1, 3, 11.5, 30) composite, at the molar ratio n=1, the LiNH2 constituent destabilizes LiAlH4 and enhances its decomposition to Li3AlH6, Al and H2, and subsequently Li3AlH6 to LiH, Al and H2. LiNH2 ceases to destabilize LiAlH4 in the composites with increasing molar content of LiAlH4 (n≥3). For the (nLiAlH4+MnCl2; n=1, 3, 8, 13, 30, 63) composite, XRD phase analysis shows that chemical reaction occurs during ball milling between the hydride and chloride constituent forming either an inverse cubic spinel Li2MnCl4 for n=1 or lithium salt (LiCl) for n>1. Both reactions release hydrogen. For the (LiNH2+nMgH2; n=1, 1.5) composite the pathway of hydride reactions depends on the milling energy and milling time. Under low milling energy up to 25h there is either no reaction (1h) or the reaction products are amorphous Mg(NH2)2 (magnesium amide) and nanocrystalline LiH (lithium hydride) without any release of hydrogen. Under high milling energy a new hydride MgNH (magnesium imide) is formed due to reaction between Mg(NH2)2 and MgH2 which is always associated with the release of H2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying

Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...

متن کامل

A Comparative Study of the Synthesis and Thermal Stability of Nanostrucrured Al and Al-Mg Powders Fabricated by Mechanical Alloying Technique

Nanostructured Al and Al-Mg (Mg 30 wt. %) powders with the mean crystallite sizes of 42 and 11 nm were prepared through the solid state ball milling technique. The milling process was performed for various times up to 12 h in argon atmosphere and the synthesized powders were in detail characterized by different techniques. The effect of milling time and Mg addition on the size, morphology, chem...

متن کامل

هیدروژناسیون ترکیب Mg-Ni آسیاب شده‌

Magnesium hydride is one of the hydrogen storage materials in solid state that is taken into consideration due to its high storage capacity. This paper investigates the adsorption of magnesium and nickel catalyst combination in 473 K at 2.0 and 3.5 Mpa. A planetary ball mill is used in order to produce fine particles and to increase adsorption. A volumetric method (Sievert) is used for hydrogen...

متن کامل

Tuning metal hydride thermodynamics via size and composition: Li-H, Mg-H, Al-H, and Mg-Al-H nanoclusters for hydrogen storage.

Nanoscale Li and intermetallic Al-Mg metal hydride clusters are investigated as a possible hydrogen storage material using the high-level quantum Monte Carlo computational method. Lower level methods such as density functional theory are qualitatively, not quantitatively accurate for the calculation of the enthalpy of absorption of H(2). At sizes around 1 nm, it is predicted that Al/Mg alloyed ...

متن کامل

Oxygen‐free Layer‐by‐Layer Assembly of Lithiated Composites on Graphene for Advanced Hydrogen Storage

A facile hydrogenation-induced self-assembly strategy to synthesize lithium hydride (LiH) nanosheets with a thickness of 2 nm that are uniformly distributed on graphene is reported and designed. Taking advantage of LiH nanosheets with high reactivity and a homogeneous distribution on graphene support as a nanoreactor, the confined chemical synthesis of oxygen-free lithiated composites is effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011