Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil.
نویسندگان
چکیده
We used both cultivation and direct recovery of bacterial 16S rRNA gene (rDNA) sequences to investigate the structure of the bacterial community in anoxic rice paddy soil. Isolation and phenotypic characterization of 19 saccharolytic and cellulolytic strains are described in the accompanying paper (K.-J. Chin, D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen, Appl. Environ. Microbiol. 65:5042-5049, 1999). Here we describe the phylogenetic positions of these strains in relation to 57 environmental 16S rDNA clone sequences. Close matches between the two data sets were obtained for isolates from the culturable populations determined by the most-probable-number counting method to be large (3 x 10(7) to 2.5 x 10(8) cells per g [dry weight] of soil). This included matches with 16S rDNA similarity values greater than 98% within distinct lineages of the division Verrucomicrobia (strain PB90-1) and the Cytophaga-Flavobacterium-Bacteroides group (strains XB45 and PB90-2), as well as matches with similarity values greater than 95% within distinct lines of descent of clostridial cluster XIVa (strain XB90) and the family Bacillaceae (strain SB45). In addition, close matches with similarity values greater than 95% were obtained for cloned 16S rDNA sequences and bacteria (strains DR1/8 and RPec1) isolated from the same type of rice paddy soil during previous investigations. The correspondence between culture methods and direct recovery of environmental 16S rDNA suggests that the isolates obtained are representative geno- and phenotypes of predominant bacterial groups which account for 5 to 52% of the total cells in the anoxic rice paddy soil. Furthermore, our findings clearly indicate that a dual approach results in a more objective view of the structural and functional composition of a soil bacterial community than either cultivation or direct recovery of 16S rDNA sequences alone.
منابع مشابه
Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval.
A dual approach consisting of cultivation and molecular retrieval of partial archaeal 16S rRNA genes was carried out to characterize the diversity and structure of the methanogenic community inhabiting the anoxic bulk soil of flooded rice microcosms. The molecular approach identified four groups of known methanogens. Three environmental sequences clustered with Methanobacterium bryantii and Met...
متن کاملNovel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil.
The use of dilution culture techniques to cultivate saccharolytic bacteria present in the anoxic soil of flooded rice microcosms allowed the isolation of three new strains of bacteria, typified by their small cell sizes, with culturable numbers estimated at between 1.2 x 10(5) and 7.3 x 10(5) cells per g of dry soil. The average cell volumes of all three strains were 0.03 to 0.04 microns3, and ...
متن کاملBacterial populations colonizing and degrading rice straw in anoxic paddy soil.
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition...
متن کاملIdentifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture.
Culturable bacteria that were numerically important members of a marine enrichment community were identified and characterized phylogenetically. Selective and nonselective isolation methods were used to obtain 133 culturable bacterial isolates from model marine communities enriched with the high-molecular-weight (lignin-rich) fraction of pulp mill effluent. The culture collection was screened a...
متن کاملPhylogeny of urate oxidase producing bacteria: on the basis of gene sequences of 16S rRNA and uricase protein
Uricase or Urate oxidase (urate:oxygen oxidoreductase, EC 1.7.3.3), a peroxisomal enzyme which is found in many bacteria, catalyzes the oxidative opening of the purine ring of urate to yield allantoin, carbon dioxide, and hydrogen peroxide. In this study, the phylogeny of urate oxidase (uricase) producing bacteria was studied based on gene sequences of 16S rRNA and uricase protein. Repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 65 11 شماره
صفحات -
تاریخ انتشار 1999