Activation of HIF-1 by metallothionein contributes to cardiac protection in the diabetic heart.

نویسندگان

  • Wanli Xue
  • Yanlong Liu
  • Jingchan Zhao
  • Lu Cai
  • Xiaokun Li
  • Wenke Feng
چکیده

Metallothionein (MT) protects against heavy metal-induced cellular damage and may participate in other fundamental physiological and pathological processes, such as antioxidation, proliferation, and cell survival. Previously, we have shown that elevation of MT by transgene or by induction with zinc protects the heart against diabetic cardiomyopathy by mechanisms such as antidiabetes-induced oxidative stress and inactivation of glycogen synthase kinase-3, which mediates glucose metabolism. We also reported that MT overexpression rescued the diabetic-induced reduction of hypoxia-inducible factor (HIF)-1α, which plays an important role in glucose utilization and angiogenesis. Here, we showed that overexpression of MT increased hexokinase (HK)-II expression under control conditions and attenuated diabetes-decreased HK-II expression. Glycolytic flux assay demonstrated that MT increased glycolysis output in high glucose-containing media-cultured H9c2 cells. The diabetes-induced reduction in cardiac capillaries was also attenuated by MT overexpression. Furthermore, MT induction significantly increased HIF-1 expression under both control and diabetic conditions. Moreover, in the present study, we demonstrated that MT-enhanced HIF-1α activity is likely through a mechanism of protein nuclear translocation. These results suggest that MT induces HIF-1α expression, leading to increased HK-II in the diabetic heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of 4 weeks aerobic training on oxidative and angiogenesis markers of cardiac tissue in type 2 diabetic male wistar rats

Background and Aim: Type 2 diabetes exerts oxidative and anti-angiogenesis effects on the cardiac tissue through different pathways.  The aim of present study was to investigate the effects of 4 weeks aerobic training on levels of ROS and NO and gene expression of HIF-1α and VEGF of cardiac tissue in type 2 diabetic male wistar rats. Materials and Methods: In an experimental study, 30 male wist...

متن کامل

Effect of High-Intensity Interval Training (HIIT) on Hypoxia-Inducible Factor-1 Alpha (HIF-1α) Gene Expression in Heart Tissue and Insulin Resistance Index in Type 2 Diabetic Rats

 Background and Aim: One of the most common metabolic diseases is diabetes with hyperglycemic properties and endogenous insulin dysfunction. This study aimed to evaluate the effect of 10 weeks HIIT on HIF-1α gene expression in heart tissue of rats with type 2 diabetes. Methods: In this experimental study, 36 Wister rats with a mean weight of 200±58g were randomly assigned to control, diabetic,...

متن کامل

Inactivation of GSK-3β by Metallothionein Prevents Diabetes-Related Changes in Cardiac Energy Metabolism, Inflammation, Nitrosative Damage, and Remodeling

OBJECTIVE Glycogen synthase kinase (GSK)-3beta plays an important role in cardiomyopathies. Cardiac-specific metallothionein-overexpressing transgenic (MT-TG) mice were highly resistant to diabetes-induced cardiomyopathy. Therefore, we investigated whether metallothionein cardiac protection against diabetes is mediated by inactivation of GSK-3beta. RESEARCH DESIGN AND METHODS Diabetes was ind...

متن کامل

The Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats

Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...

متن کامل

Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury.

Oxidative stress is involved in the pathogenesis of diabetes and its cardiovascular complications. Metallothionein (MT), a stress-response protein, is significantly increased in the liver and kidney of diabetic animals. We examined whether diabetes also induces cardiac MT synthesis through oxidative damage and whether MT overexpression protects the heart from injury. Diabetes was induced in mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 302 12  شماره 

صفحات  -

تاریخ انتشار 2012