Protein folding dynamics via quantification of kinematic energy landscape.
نویسندگان
چکیده
We study folding dynamics of proteinlike sequences on a square lattice using a physical move set that exhausts all possible conformational changes. By analytically solving the master equation, we follow the time-dependent probabilities of occupancy of all 802 075 conformations of 16 mers over 7 orders of time span. We find that (i) folding rates of these proteinlike sequences of the same length can differ by 4 orders of magnitude, (ii) folding rates of sequences of the same conformation can differ by a factor of 190, and (iii) parameters of the native structures, designability, and thermodynamic properties are weak predictors of the folding rates; rather, a basin analysis of the kinematic energy landscape defined by the moves can provide an excellent account of the observed folding rates.
منابع مشابه
Shedding light on protein folding, structural and functional dynamics by single molecule studies.
The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the...
متن کاملDiffusion dynamics, moments, and distribution of first-passage time on the protein-folding energy landscape, with applications to single molecules.
We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We found that the first passage-time (FPT) distribution undergoes a dynamic transition at a temperature below which the FPT distribution develops a power-law tail, a signature o...
متن کاملFirst-Passage Time Distribution and Non-Markovian Diffusion Dynamics of Protein Folding
We study the kinetics of protein folding via statistical energy landscape theory. We concentrate on the local-connectivity case, where the configurational changes can only occur among neighboring states, with the folding progress described in terms of an order parameter given by the fraction of native conformations. The non-Markovian diffusion dynamics is analyzed in detail and an expression fo...
متن کاملNetwork Structure of Protein Folding Pathways
The classical approach to protein folding inspired by statistical mechanics avoids the high dimensional structure of the conformation space by using effective coordinates. Here we introduce a network approach to capture the statistical properties of the structure of conformation spaces. Conformations are represented as nodes of the network, while links are transitions via elementary rotations a...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2006