First-order Interval Type-2 TSK Fuzzy Logic Systems Using a Hybrid Learning Algorithm

نویسندگان

  • GERARDO M. MENDEZ
  • ISMAEL LOPEZ-JUAREZ
چکیده

This article presents a new learning methodology based on a hybrid algorithm for interval type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-2 TSK FLS output is calculated and the consequent parameters are estimated by recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by back-propagation (BP) method. The proposed hybrid methodology was used to construct an interval type-2 TSK fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at the finishing Scale Breaker (SB) entry zone. Comparative results show the advantage of the hybrid learning method RLS-BP over BP. Key-Words: Interval type-2 TKS fuzzy inference systems; Interval type-2 TSK neuro-fuzzy systems; Hybrid learning; Uncertain rule-based TKS fuzzy logic systems; Temperature modelling and prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Learning for General Type-2 TSK Fuzzy Logic Systems

This work is focused on creating fuzzy granular classification models based on general type-2 fuzzy logic systems when consequents are represented by interval type-2 TSK linear functions. Due to the complexity of general type-2 TSK fuzzy logic systems, a hybrid learning approach is proposed, where the principle of justifiable granularity is heuristically used to define an amount of uncertainty ...

متن کامل

Sliding mode incremental learning algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy neural networks

Type-2 fuzzy logic systems are an area of growing interest over the last years. The ability to model uncertainties and to perform under noisy conditions in a better way than type-1 fuzzy logic systems increases their applicability. A new stable on-line learning algorithm for interval type-2 Takagi–Sugeno–Kang (TSK) fuzzy neural networks is proposed in this paper. Differently from the other rece...

متن کامل

On-line Adaptive Interval Type-2 Fuzzy Controller Design via Stable SPSA Learning Mechanism

This paper proposes an interval type-2 Takagi-Sugeno-Kang fuzzy neural system (IT2TFNS) to develop an on-line adaptive controller using stable simultaneous perturbation stochastic approximation (SPSA) algorithm. The proposed IT2TFNS realizes an interval type-2 TSK fuzzy logic system formed by the neural network structure. Differ from the most of interval type-2 fuzzy systems, the type-reduction...

متن کامل

An optimal design for type-2 fuzzy logic system using hybrid of chaos firefly algorithm and genetic algorithm and its application to sea level prediction

This paper proposes an optimal design for interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy logic system. In this method, the fuzzy c-means clustering algorithm is used to determine structure of fuzzy rule as well as number of rules. A hybrid between chaos firefly algorithm and genetic algorithms (CFGA) is developed, which is used to find the desirable parameters of membership functions and conseq...

متن کامل

Orthogonal-least-squares and backpropa- gation hybrid learning algorithm for interval A2-C1 singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems

A novel learning methodology based on a hybrid mechanism for training interval singleton type-2 Takagi-SugenoKang fuzzy logic systems uses recursive orthogonal least-squares to tune the type-1 consequent parameters and the steepest descent method to tune the interval type-2 antecedent parameters. The proposed hybrid-learning algorithm changes the interval type-2 model parameters adaptively to m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005