Computing Class Polynomials for Abelian Surfaces
نویسندگان
چکیده
We describe a quasi-linear algorithm for computing Igusa class polynomials of Jacobians of genus 2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Dupont for evaluating θconstants in quasi-linear time using Newton iterations on the Borchardt mean. We report on experiments with our implementation and present an example with class number 17608.
منابع مشابه
Explicit Cm-theory for Level 2-structures on Abelian Surfaces
For a complex abelian surface A with endomorphism ring isomorphic to the maximal order in a quartic CM-field K, the Igusa invariants j1(A), j2(A), j3(A) generate an unramified abelian extension of the reflex field of K. In this paper we give an explicit geometric description of the Galois action of the class group of this reflex field on j1(A), j2(A), j3(A). Our description can be expressed by ...
متن کاملComputing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کاملComputing Riemann theta functions
The Riemann theta function is a complex-valued function of g complex variables. It appears in the construction of many (quasi-)periodic solutions of various equations of mathematical physics. In this paper, algorithms for its computation are given. First, a formula is derived allowing the pointwise approximation of Riemann theta functions, with arbitrary, user-specified precision. This formula ...
متن کاملOn polarised class groups of orders in quartic CM-fields
We give an explicit characterisation of pairs of orders in a quartic CM-field that admit the same polarised ideal class group structure. This generalises a simpler result for imaginary quadratic fields. We give applications to computing endomorphism rings of abelian surfaces over finite fields, and extending a completeness result of Murabayashi and Umegaki [13] to a list of abelian surfaces ove...
متن کاملTeichmüller Polynomials, Alexander Polynomials and Finite Covers of Surfaces
In this article we explore a connection between finite covers of surfaces and the Teichmüller polynomial of a fibered face of a hyperbolic 3–manifold. We consider the action of a homological pseudo-Anosov homeomorphism ψ on the homology groups of a class of finite abelian covers of a surface Σg,n. Eigenspaces of the deck group actions on these covers are naturally parametrized by rational point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013