A VLSI convolutional neural network for image recognition using merged/mixed analog-digital architecture

نویسندگان

  • Keisuke Korekado
  • Takashi Morie
  • Osamu Nomura
  • Hiroshi Ando
  • Teppei Nakano
  • Masakazu Matsugu
  • Atsushi Iwata
چکیده

Hierarchical convolutional neural networks are a well-known robust image-recognition model. In order to apply this model to robot vision or various intelligent vision systems, its VLSI implementation with high performance and low power consumption is required. This paper proposes a VLSI convolutional network architecture using a hybrid approach composed of pulse-width modulation (PWM) and digital circuits. We call this approach merged/mixed analog-digital architecture. The VLSI chip includes PWM neuron circuits, PWM/digital converters, digital adder-subtracters, and digital memory. We have designed and fabricated a VLSI chip by using a 0.35 m CMOS process. The VLSI chip can perform 6-bit precision convolution calculations for an image of 100 100 pixels with a receptive field area of up to 20 20 pixels within 5 ms, which means a performance of 2 GOPS. Power consumption of PWM neuron circuits is measured to be 20 mW. We have verified successful operations using a fabricated VLSI chip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network VLSI for Image Recognition Using Merged/Mixed Analog-Digital Architecture

Hierarchical convolutional neural networks are a well-known robust image-recognition model. In order to apply this model to robot vision or various intelligent vision systems, its VLSI implementation with high performance and low power consumption is required. This paper proposes a convolutional network VLSI architecture using a hybrid approach composed of pulse-width modulation (PWM) and digit...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

A Mixed Analog - Digital Artificial Neural Network Architecture with on - Chip Learning

1 A Mixed Analog-Digital Arti cial Neural Network Architecture with On-Chip Learning Alexandre Schmid, Yusuf Leblebici and Daniel Mlynek Abstract|This paper presents a novel arti cial neural network architecture with on-chip learning capability. The issue of straightforward designow integration of an autonomous unit is addressed with a mixed analog-digital approach, by implementing a charge-bas...

متن کامل

A Feed-Forward Time-Multiplexed Neural Network with Mixed-Signal Neuron-Synapse Arrays

A new time-multiplexed architecture is proposed for mixed-signal neural networks. MRIII is used for training the network which is more robust to mixedsignal designs. The problem of node addressing and routing for implementing the MRIII is solved by performing the operations in current mode and using a counter. Mixed-signal MDACs are used for synaptic multiplication. A new compact architecture i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2004